Skip to content

Commit

Permalink
connect database
Browse files Browse the repository at this point in the history
  • Loading branch information
csunny committed May 3, 2023
1 parent 674473e commit d34c231
Show file tree
Hide file tree
Showing 5 changed files with 276 additions and 203 deletions.
200 changes: 12 additions & 188 deletions pilot/app.py
Original file line number Diff line number Diff line change
Expand Up @@ -33,198 +33,22 @@ def knowledged_qa_demo(text_list):


def get_answer(q):
base_knowledge = """
执行计划是对一条 SQL 查询语句在数据库中执行过程的描述。用户可以通过 EXPLAIN 命令查看优化器针对指定 SQL 生成的逻辑执行计划。
如果要分析某条 SQL 的性能问题,通常需要先查看 SQL 的执行计划,排查每一步 SQL 执行是否存在问题。所以读懂执行计划是 SQL 优化的先决条件,而了解执行计划的算子是理解 EXPLAIN 命令的关键。
OceanBase 数据库的执行计划命令有三种模式:EXPLAIN BASIC、EXPLAIN 和 EXPLAIN EXTENDED。这三种模式对执行计划展现不同粒度的细节信息:
EXPLAIN BASIC 命令用于最基本的计划展示。
EXPLAIN EXTENDED 命令用于最详细的计划展示(通常在排查问题时使用这种展示模式)。
EXPLAIN 命令所展示的信息可以帮助普通用户了解整个计划的执行方式。
EXPLAIN 命令格式如下:
EXPLAIN [BASIC | EXTENDED | PARTITIONS | FORMAT = format_name] [PRETTY | PRETTY_COLOR] explainable_stmt
format_name:
{ TRADITIONAL | JSON }
explainable_stmt:
{ SELECT statement
| DELETE statement
| INSERT statement
| REPLACE statement
| UPDATE statement }
EXPLAIN 命令适用于 SELECT、DELETE、INSERT、REPLACE 和 UPDATE 语句,显示优化器所提供的有关语句执行计划的信息,包括如何处理该语句,如何联接表以及以何种顺序联接表等信息。
一般来说,可以使用 EXPLAIN EXTENDED 命令,将表扫描的范围段展示出来。使用 EXPLAIN OUTLINE 命令可以显示 Outline 信息。
FORMAT 选项可用于选择输出格式。TRADITIONAL 表示以表格格式显示输出,这也是默认设置。JSON 表示以 JSON 格式显示信息。
使用 EXPLAIN PARTITITIONS 也可用于检查涉及分区表的查询。如果检查针对非分区表的查询,则不会产生错误,但 PARTIONS 列的值始终为 NULL。
对于复杂的执行计划,可以使用 PRETTY 或者 PRETTY_COLOR 选项将计划树中的父节点和子节点使用树线或彩色树线连接起来,使得执行计划展示更方便阅读。示例如下:
obclient> CREATE TABLE p1table(c1 INT ,c2 INT) PARTITION BY HASH(c1) PARTITIONS 2;
Query OK, 0 rows affected
obclient> CREATE TABLE p2table(c1 INT ,c2 INT) PARTITION BY HASH(c1) PARTITIONS 4;
Query OK, 0 rows affected
obclient> EXPLAIN EXTENDED PRETTY_COLOR SELECT * FROM p1table p1 JOIN p2table p2 ON p1.c1=p2.c2\G
*************************** 1. row ***************************
Query Plan: ==========================================================
|ID|OPERATOR |NAME |EST. ROWS|COST|
----------------------------------------------------------
|0 |PX COORDINATOR | |1 |278 |
|1 | EXCHANGE OUT DISTR |:EX10001|1 |277 |
|2 | HASH JOIN | |1 |276 |
|3 | ├PX PARTITION ITERATOR | |1 |92 |
|4 | │ TABLE SCAN |P1 |1 |92 |
|5 | └EXCHANGE IN DISTR | |1 |184 |
|6 | EXCHANGE OUT DISTR (PKEY)|:EX10000|1 |184 |
|7 | PX PARTITION ITERATOR | |1 |183 |
|8 | TABLE SCAN |P2 |1 |183 |
==========================================================
Outputs & filters:
-------------------------------------
0 - output([INTERNAL_FUNCTION(P1.C1, P1.C2, P2.C1, P2.C2)]), filter(nil)
1 - output([INTERNAL_FUNCTION(P1.C1, P1.C2, P2.C1, P2.C2)]), filter(nil), dop=1
2 - output([P1.C1], [P2.C2], [P1.C2], [P2.C1]), filter(nil),
equal_conds([P1.C1 = P2.C2]), other_conds(nil)
3 - output([P1.C1], [P1.C2]), filter(nil)
4 - output([P1.C1], [P1.C2]), filter(nil),
access([P1.C1], [P1.C2]), partitions(p[0-1])
5 - output([P2.C2], [P2.C1]), filter(nil)
6 - (#keys=1, [P2.C2]), output([P2.C2], [P2.C1]), filter(nil), dop=1
7 - output([P2.C1], [P2.C2]), filter(nil)
8 - output([P2.C1], [P2.C2]), filter(nil),
access([P2.C1], [P2.C2]), partitions(p[0-3])
1 row in set
## 执行计划形状与算子信息
在数据库系统中,执行计划在内部通常是以树的形式来表示的,但是不同的数据库会选择不同的方式展示给用户。
如下示例分别为 PostgreSQL 数据库、Oracle 数据库和 OceanBase 数据库对于 TPCDS Q3 的计划展示。
```sql
obclient> SELECT /*TPC-DS Q3*/ *
FROM (SELECT dt.d_year,
item.i_brand_id brand_id,
item.i_brand brand,
Sum(ss_net_profit) sum_agg
FROM date_dim dt,
store_sales,
item
WHERE dt.d_date_sk = store_sales.ss_sold_date_sk
AND store_sales.ss_item_sk = item.i_item_sk
AND item.i_manufact_id = 914
AND dt.d_moy = 11
GROUP BY dt.d_year,
item.i_brand,
item.i_brand_id
ORDER BY dt.d_year,
sum_agg DESC,
brand_id)
WHERE ROWNUM <= 100;
PostgreSQL 数据库执行计划展示如下:
Limit (cost=13986.86..13987.20 rows=27 width=91)
Sort (cost=13986.86..13986.93 rows=27 width=65)
Sort Key: dt.d_year, (sum(store_sales.ss_net_profit)), item.i_brand_id
HashAggregate (cost=13985.95..13986.22 rows=27 width=65)
Merge Join (cost=13884.21..13983.91 rows=204 width=65)
Merge Cond: (dt.d_date_sk = store_sales.ss_sold_date_sk)
Index Scan using date_dim_pkey on date_dim dt (cost=0.00..3494.62 rows=6080 width=8)
Filter: (d_moy = 11)
Sort (cost=12170.87..12177.27 rows=2560 width=65)
Sort Key: store_sales.ss_sold_date_sk
Nested Loop (cost=6.02..12025.94 rows=2560 width=65)
Seq Scan on item (cost=0.00..1455.00 rows=16 width=59)
Filter: (i_manufact_id = 914)
Bitmap Heap Scan on store_sales (cost=6.02..658.94 rows=174 width=14)
Recheck Cond: (ss_item_sk = item.i_item_sk)
Bitmap Index Scan on store_sales_pkey (cost=0.00..5.97 rows=174 width=0)
Index Cond: (ss_item_sk = item.i_item_sk)
Oracle 数据库执行计划展示如下:
Plan hash value: 2331821367
--------------------------------------------------------------------------------------------------
| Id | Operation | Name | Rows | Bytes | Cost (%CPU)| Time |
--------------------------------------------------------------------------------------------------
| 0 | SELECT STATEMENT | | 100 | 9100 | 3688 (1)| 00:00:01 |
|* 1 | COUNT STOPKEY | | | | | |
| 2 | VIEW | | 2736 | 243K| 3688 (1)| 00:00:01 |
|* 3 | SORT ORDER BY STOPKEY | | 2736 | 256K| 3688 (1)| 00:00:01 |
| 4 | HASH GROUP BY | | 2736 | 256K| 3688 (1)| 00:00:01 |
|* 5 | HASH JOIN | | 2736 | 256K| 3686 (1)| 00:00:01 |
|* 6 | TABLE ACCESS FULL | DATE_DIM | 6087 | 79131 | 376 (1)| 00:00:01 |
| 7 | NESTED LOOPS | | 2865 | 232K| 3310 (1)| 00:00:01 |
| 8 | NESTED LOOPS | | 2865 | 232K| 3310 (1)| 00:00:01 |
|* 9 | TABLE ACCESS FULL | ITEM | 18 | 1188 | 375 (0)| 00:00:01 |
|* 10 | INDEX RANGE SCAN | SYS_C0010069 | 159 | | 2 (0)| 00:00:01 |
| 11 | TABLE ACCESS BY INDEX ROWID| STORE_SALES | 159 | 2703 | 163 (0)| 00:00:01 |
--------------------------------------------------------------------------------------------------
OceanBase 数据库执行计划展示如下:
|ID|OPERATOR |NAME |EST. ROWS|COST |
-------------------------------------------------------
|0 |LIMIT | |100 |81141|
|1 | TOP-N SORT | |100 |81127|
|2 | HASH GROUP BY | |2924 |68551|
|3 | HASH JOIN | |2924 |65004|
|4 | SUBPLAN SCAN |VIEW1 |2953 |19070|
|5 | HASH GROUP BY | |2953 |18662|
|6 | NESTED-LOOP JOIN| |2953 |15080|
|7 | TABLE SCAN |ITEM |19 |11841|
|8 | TABLE SCAN |STORE_SALES|161 |73 |
|9 | TABLE SCAN |DT |6088 |29401|
=======================================================
由示例可见,OceanBase 数据库的计划展示与 Oracle 数据库类似。
OceanBase 数据库执行计划中的各列的含义如下:
列名 含义
ID 执行树按照前序遍历的方式得到的编号(从 0 开始)。
OPERATOR 操作算子的名称。
NAME 对应表操作的表名(索引名)。
EST. ROWS 估算该操作算子的输出行数。
COST 该操作算子的执行代价(微秒)。
OceanBase 数据库 EXPLAIN 命令输出的第一部分是执行计划的树形结构展示。其中每一个操作在树中的层次通过其在 operator 中的缩进予以展示,层次最深的优先执行,层次相同的以特定算子的执行顺序为标准来执行。
问题: update a not exists (b…)
我一开始以为 B是驱动表,B的数据挺多的 后来看到NLAJ,是说左边的表关联右边的表
所以这个的驱动表是不是实际是A,用A的匹配B的,这个理解有问题吗
回答: 没错 A 驱动 B的
问题: 光知道最下最右的是驱动表了 所以一开始搞得有点懵 :sweat_smile:
回答: nlj应该原理应该都是左表(驱动表)的记录探测右表(被驱动表), 选哪张成为左表或右表就基于一些其他考量了,比如数据量, 而anti join/semi join只是对 not exist/exist的一种优化,相关的原理和资料网上可以查阅一下
问题: 也就是nlj 就是按照之前理解的谁先执行 谁就是驱动表 也就是执行计划中的最右的表
而anti join/semi join,谁在not exist左面,谁就是驱动表。这么理解对吧
回答: nlj也是左表的表是驱动表,这个要了解下计划执行方面的基本原理,取左表的一行数据,再遍历右表,一旦满足连接条件,就可以返回数据
anti/semi只是因为not exists/exist的语义只是返回左表数据,改成anti join是一种计划优化,连接的方式比子查询更优
"""
base_knowledge = """ """
text_list = [base_knowledge]
index = knowledged_qa_demo(text_list)
response = index.query(q)
return response.response

def get_similar(q):
from pilot.vector_store.extract_tovec import knownledge_tovec
docsearch = knownledge_tovec("./datasets/plan.md")
docs = docsearch.similarity_search_with_score(q, k=1)

for doc in docs:
dc, s = doc
print(dc.page_content)
yield dc.page_content

if __name__ == "__main__":
# agent_demo()

Expand All @@ -235,7 +59,7 @@ def get_answer(q):
text_output = gr.TextArea()
text_button = gr.Button()

text_button.click(get_answer, inputs=text_input, outputs=text_output)
text_button.click(get_similar, inputs=text_input, outputs=text_output)

demo.queue(concurrency_count=3).launch(server_name="0.0.0.0")

36 changes: 35 additions & 1 deletion pilot/connections/mysql_conn.py
Original file line number Diff line number Diff line change
@@ -1,2 +1,36 @@
#!/usr/bin/env python3
# -*- coding: utf-8 -*-
# -*- coding: utf-8 -*-

import pymysql

class MySQLOperator:
"""Connect MySQL Database fetch MetaData For LLM Prompt """
def __init__(self, user, password, host="localhost", port=3306) -> None:

self.conn = pymysql.connect(
host=host,
user=user,
passwd=password,
charset="utf8mb4",
cursorclass=pymysql.cursors.DictCursor
)

def get_schema(self, schema_name):

with self.conn.cursor() as cursor:
_sql = f"""
select concat(table_name, "(" , group_concat(column_name), ")") as schema_info from information_schema.COLUMNS where table_schema="{schema_name}" group by TABLE_NAME;
"""
cursor.execute(_sql)
results = cursor.fetchall()
return results


if __name__ == "__main__":
mo = MySQLOperator(
"root",
"aa123456",
)

schema = mo.get_schema("dbgpt")
print(schema)
Loading

0 comments on commit d34c231

Please sign in to comment.