This repository contains the code for our ICME 2021 paper:
Aaditya Singh*, Shreeshail Hingane*, Xinyu Gong and Zhangyang Wang. SAFIN: Arbitrary Style Transfer With Self-Attentive Factorized Instance Normalization, {pdf}).
Requirements should be installed by pip install -r requirements.txt
Download vgg_normalized.pth/decoder.pth and put them under models/
.
Use --content
and --style
to provide the respective path to the content and style image.
CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --net_file wave_net --content input/content/cornell.jpg --style input/style/woman_with_hat_matisse.jpg
You can also run the code on directories of content and style images using --content_dir
and --style_dir
. It will save every possible combination of content and styles to the output directory.
CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --net_file wave_net --content_dir input/content --style_dir input/style
This is an example of mixing four styles by specifying --style
and --style_interpolation_weights
option.
CUDA_VISIBLE_DEVICES=<gpu_id> python test.py --net_file wave_net --content input/content/avril.jpg --style input/style/picasso_self_portrait.jpg,input/style/impronte_d_artista.jpg,input/style/trial.jpg,input/style/antimonocromatismo.jpg --style_interpolation_weights 1,1,1,1 --content_size 512 --style_size 512 --crop
Some other options:
--content_size
: New (minimum) size for the content image. Keeping the original size if set to 0.--style_size
: New (minimum) size for the content image. Keeping the original size if set to 0.--alpha
: Adjust the degree of stylization. It should be a value between 0.0 and 1.0 (default).--preserve_color
: Preserve the color of the content image.
Use --content_dir
and --style_dir
to provide the respective directory to the content and style images.
CUDA_VISIBLE_DEVICES=<gpu_id> python train.py --net_file wave_net --content_dir <content_dir> --style_dir <style_dir> --start_iter 0 --save_dir ./save/
For more details and parameters, please refer to --help option.
@INPROCEEDINGS{9428124,
author={Singh, Aaditya and Hingane, Shreeshail and Gong, Xinyu and Wang, Zhangyang},
booktitle={2021 IEEE International Conference on Multimedia and Expo (ICME)},
title={SAFIN: Arbitrary Style Transfer with Self-Attentive Factorized Instance Normalization},
year={2021},
volume={},
number={},
pages={1-6},
doi={10.1109/ICME51207.2021.9428124}}