Skip to content
/ QFiND Public

Quantum Finite-temperature Noise Discretizer (QFiND)

License

Notifications You must be signed in to change notification settings

htkhsh/QFiND

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

53 Commits
 
 
 
 
 
 
 
 
 
 

Repository files navigation

QFiND

This repository contains Python codes for constructing an effective discrete representation of a system-bath model. In other words, this codes provides an approximation of the bath correlation function $C(t)$ for a given spectral density $J(\omega)$

$$ \begin{aligned} C(t)&=\frac{1}{2\pi} \int_{-\infty}^{\infty} \mathrm{d}\omega J(\omega)\left[\mathrm{coth}\left(\frac{\beta \omega}{2}\right)+1\right] \mathrm{e}^{-i \omega t}\\ &\approx \sum_{k=1}^M g_k^2 \mathrm{e}^{-i\omega_k t} \end{aligned} $$

where $\omega_k,g_k \in ℝ \backslash \{0\}$. The code allows for the estimation of frequencies and coefficients in the system plus bosonic bath model using Interpolative Decomposition (ID) and Non-negative Least Squares (NNLS).

Usage

  1. Set the required parameters in an input file input.txt (see below).
  2. Run the main script:
    python ./src/qfind.py input.txt
    
  3. The output will include the estimated frequencies and coefficients (saved as omega_g.txt), along with a plot of the resultant BCF (saved as bcf.png).

Parameter Configuration

Setting Parameters

To customize the simulation, you need to adjust certain parameters in the following files:

  • input.txt: This file contains important global parameters such as:
    • method: Discretization method, such as:
      • BSDO: BSDO method
      • ID: ID approach
      • LOG: Logarithmic discretization
      • MDM: Mode density method
    • temperature: Specifies the temperature of the system in $[\mathrm{K}]$.
    • Tc (double): Cutoff time in $[\mathrm{fs}]$.
    • Omega_min (double): Minimum cutoff frequency in $[\mathrm{cm}^{-1}]$.
    • Omega_max (double): Maximum cutoff frequency in $[\mathrm{cm}^{-1}]$.
    • N_t (integer): Number of sample points in the time domain.
    • N_w (integer): Number of sample points in the frequency domain.
    • wmax_quad: The maximum frequency cutoff used in the numerical integration.
    • eps (double): Threshold for the ID.
    • frank (integer): Rank for the ID. When frank is set to a value larger than 0 (frank>0), ID is performed based on the rank.
    • stype: The type of spectral density $J(\omega)$ (PWR, TM, BO). The program supports several types of spectral density, such as:
      • Power-law with exponential cutoff (PWR) $$J(\omega)=\pi\alpha\omega_c^{1-s}\omega^s\mathrm{e}^{-\omega/\omega_c}$$
      • Sum of Tannor-Meyer type spectral densities (TM) $$J(\omega)=\sum_{j=1}^n \frac{4\Gamma_j\lambda_j(\Omega_j^2+\Gamma_j^2)\omega}{\left[(\omega+\Omega_j)^2+\Gamma_j^2\right]\left[(\omega-\Omega_j)^2+\Gamma_j^2\right]}$$
      • Sum of Brownian spectral densities (BO) $$J(\omega)=\sum_{j=1}^n 2\lambda_j\frac{\Gamma_j \Omega_j^2\omega}{(\omega^2-\Omega_j^2)^2+\Gamma_j^2\Omega_j^2}$$
    • Parameters for specific spectral density types, such as:
      • s, alpha, gamc for Power-law Exponential (PWR).
      • Omg, Gam, Lam for Tannor-Meyer type (TM) and Brownian Oscillator (BO).

Example Parameter Settings

See the directory ./examples.

Cite QFiND

If you find the framework useful in your research, we would be grateful if you could cite our publications:

Here are the bibtex entries:

@article{TakahashiBorrelli2024JCP,
  title = {Effective modeling of open quantum systems by low-rank discretization of structured environments},
  author = {Takahashi, Hideaki and Borrelli, Raffaele},
  year = {2024},
  month = oct,
  journal = {The Journal of Chemical Physics},
  volume = {161},
  number = {15},
  pages = {151101},
  issn = {0021-9606},
  doi = {10.1063/5.0232232}
}

@article{TakahashiBorrelli2025JCTC,
  title = {Discretization of {{Structured Bosonic Environments}} at {{Finite Temperature}} by {{Interpolative Decomposition}}: {{Theory}} and {{Application}}},
  shorttitle = {Discretization of {{Structured Bosonic Environments}} at {{Finite Temperature}} by {{Interpolative Decomposition}}},
  author = {Takahashi, Hideaki and Borrelli, Raffaele},
  year = {2025},
  month = feb,
  journal = {Journal of Chemical Theory and Computation},
  publisher = {American Chemical Society},
  issn = {1549-9618},
  doi = {10.1021/acs.jctc.4c01728}
}

Authors

Hideaki Takahashi ([email protected])

License

This project is distributed under the BSD 3-clause License.

About

Quantum Finite-temperature Noise Discretizer (QFiND)

Resources

License

Stars

Watchers

Forks

Languages