This repository contains Python codes for constructing an effective discrete representation of a system-bath model. In other words, this codes provides an approximation of the bath correlation function
where
- Set the required parameters in an input file
input.txt
(see below). - Run the main script:
python ./src/qfind.py input.txt
- The output will include the estimated frequencies and coefficients (saved as
omega_g.txt
), along with a plot of the resultant BCF (saved asbcf.png
).
To customize the simulation, you need to adjust certain parameters in the following files:
-
input.txt
: This file contains important global parameters such as:-
method
: Discretization method, such as:-
BSDO
: BSDO method -
ID
: ID approach -
LOG
: Logarithmic discretization -
MDM
: Mode density method
-
-
temperature
: Specifies the temperature of the system in$[\mathrm{K}]$ . -
Tc
(double): Cutoff time in$[\mathrm{fs}]$ . -
Omega_min
(double): Minimum cutoff frequency in$[\mathrm{cm}^{-1}]$ . -
Omega_max
(double): Maximum cutoff frequency in$[\mathrm{cm}^{-1}]$ . -
N_t
(integer): Number of sample points in the time domain. -
N_w
(integer): Number of sample points in the frequency domain. -
wmax_quad
: The maximum frequency cutoff used in the numerical integration. -
eps
(double): Threshold for the ID. -
frank
(integer): Rank for the ID. When frank is set to a value larger than 0 (frank
>0), ID is performed based on the rank. -
stype
: The type of spectral density$J(\omega)$ (PWR
,TM
,BO
). The program supports several types of spectral density, such as:- Power-law with exponential cutoff (
PWR
)$$J(\omega)=\pi\alpha\omega_c^{1-s}\omega^s\mathrm{e}^{-\omega/\omega_c}$$ - Sum of Tannor-Meyer type spectral densities (
TM
)$$J(\omega)=\sum_{j=1}^n \frac{4\Gamma_j\lambda_j(\Omega_j^2+\Gamma_j^2)\omega}{\left[(\omega+\Omega_j)^2+\Gamma_j^2\right]\left[(\omega-\Omega_j)^2+\Gamma_j^2\right]}$$ - Sum of Brownian spectral densities (
BO
)$$J(\omega)=\sum_{j=1}^n 2\lambda_j\frac{\Gamma_j \Omega_j^2\omega}{(\omega^2-\Omega_j^2)^2+\Gamma_j^2\Omega_j^2}$$
- Power-law with exponential cutoff (
- Parameters for specific spectral density types, such as:
-
s
,alpha
,gamc
for Power-law Exponential (PWR
). -
Omg
,Gam
,Lam
for Tannor-Meyer type (TM
) and Brownian Oscillator (BO
).
-
-
See the directory ./examples
.
If you find the framework useful in your research, we would be grateful if you could cite our publications:
- H. Takahashi and R. Borrelli, J. Chem. Phys. 161, 151101 (2024). (https://doi.org/10.1063/5.0232232)
- H. Takahashi and R. Borrelli, J. Chem. Theory Comput. (2025). (https://doi.org/10.1021/acs.jctc.4c01728)
Here are the bibtex entries:
@article{TakahashiBorrelli2024JCP,
title = {Effective modeling of open quantum systems by low-rank discretization of structured environments},
author = {Takahashi, Hideaki and Borrelli, Raffaele},
year = {2024},
month = oct,
journal = {The Journal of Chemical Physics},
volume = {161},
number = {15},
pages = {151101},
issn = {0021-9606},
doi = {10.1063/5.0232232}
}
@article{TakahashiBorrelli2025JCTC,
title = {Discretization of {{Structured Bosonic Environments}} at {{Finite Temperature}} by {{Interpolative Decomposition}}: {{Theory}} and {{Application}}},
shorttitle = {Discretization of {{Structured Bosonic Environments}} at {{Finite Temperature}} by {{Interpolative Decomposition}}},
author = {Takahashi, Hideaki and Borrelli, Raffaele},
year = {2025},
month = feb,
journal = {Journal of Chemical Theory and Computation},
publisher = {American Chemical Society},
issn = {1549-9618},
doi = {10.1021/acs.jctc.4c01728}
}
Hideaki Takahashi ([email protected])
This project is distributed under the BSD 3-clause License.