forked from xmba15/onnx_runtime_cpp
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
11 changed files
with
391 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,25 @@ | ||
/** | ||
* @file SuperPoint.cpp | ||
* | ||
* @author btran | ||
* | ||
*/ | ||
|
||
#include "SuperPoint.hpp" | ||
|
||
namespace Ort | ||
{ | ||
void SuperPoint::preprocess(float* dst, const unsigned char* src, const int64_t targetImgWidth, | ||
const int64_t targetImgHeight, const int numChannels) const | ||
{ | ||
for (int i = 0; i < targetImgHeight; ++i) { | ||
for (int j = 0; j < targetImgWidth; ++j) { | ||
for (int c = 0; c < numChannels; ++c) { | ||
dst[c * targetImgHeight * targetImgWidth + i * targetImgWidth + j] = | ||
(src[i * targetImgWidth * numChannels + j * numChannels + c] / 255.0); | ||
} | ||
} | ||
} | ||
} | ||
} // namespace Ort | ||
// namespace Ort |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
/** | ||
* @file SuperPoint.hpp | ||
* | ||
* @author btran | ||
* | ||
*/ | ||
|
||
#pragma once | ||
|
||
#include <ort_utility/ort_utility.hpp> | ||
|
||
namespace Ort | ||
{ | ||
class SuperPoint : public OrtSessionHandler | ||
{ | ||
public: | ||
static constexpr int64_t IMG_H = 480; | ||
static constexpr int64_t IMG_W = 640; | ||
static constexpr int64_t IMG_CHANNEL = 1; | ||
|
||
using OrtSessionHandler::OrtSessionHandler; | ||
|
||
void preprocess(float* dst, // | ||
const unsigned char* src, // | ||
const int64_t targetImgWidth, // | ||
const int64_t targetImgHeight, // | ||
const int numChannels) const; | ||
}; | ||
} // namespace Ort |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,143 @@ | ||
/** | ||
* @file SuperPointApp.cpp | ||
* | ||
* @author btran | ||
* | ||
*/ | ||
|
||
#include <iostream> | ||
|
||
#include "SuperPoint.hpp" | ||
#include "Utility.hpp" | ||
#include <opencv2/opencv.hpp> | ||
#include <stdexcept> | ||
|
||
namespace | ||
{ | ||
std::pair<std::vector<cv::KeyPoint>, cv::Mat> processOneFrame(const Ort::SuperPoint& osh, const cv::Mat& inputImg, | ||
float* dst, int borderRemove = 4, | ||
float confidenceThresh = 0.015, bool alignCorners = true); | ||
} // namespace | ||
|
||
int main(int argc, char* argv[]) | ||
{ | ||
if (argc != 4) { | ||
std::cerr << "Usage: [apps] [path/to/onnx/super/point] [path/to/image1] [path/to/image2]" << std::endl; | ||
return EXIT_FAILURE; | ||
} | ||
|
||
const std::string ONNX_MODEL_PATH = argv[1]; | ||
const std::vector<std::string> IMAGE_PATHS = {argv[2], argv[3]}; | ||
|
||
Ort::SuperPoint osh(ONNX_MODEL_PATH, 0, | ||
std::vector<std::vector<int64_t>>{ | ||
{1, Ort::SuperPoint::IMG_CHANNEL, Ort::SuperPoint::IMG_H, Ort::SuperPoint::IMG_W}}); | ||
|
||
std::vector<cv::Mat> images; | ||
std::vector<cv::Mat> grays; | ||
std::transform(IMAGE_PATHS.begin(), IMAGE_PATHS.end(), std::back_inserter(images), | ||
[](const auto& imagePath) { return cv::imread(imagePath); }); | ||
for (int i = 0; i < 2; ++i) { | ||
if (images[i].empty()) { | ||
throw std::runtime_error("failed to open " + IMAGE_PATHS[i]); | ||
} | ||
} | ||
std::transform(IMAGE_PATHS.begin(), IMAGE_PATHS.end(), std::back_inserter(grays), | ||
[](const auto& imagePath) { return cv::imread(imagePath, 0); }); | ||
|
||
std::vector<float> dst(Ort::SuperPoint::IMG_CHANNEL * Ort::SuperPoint::IMG_H * Ort::SuperPoint::IMG_W); | ||
std::vector<std::pair<std::vector<cv::KeyPoint>, cv::Mat>> results; | ||
std::transform(grays.begin(), grays.end(), std::back_inserter(results), | ||
[&osh, &dst](const auto& gray) { return processOneFrame(osh, gray, dst.data()); }); | ||
|
||
return EXIT_SUCCESS; | ||
} | ||
|
||
namespace | ||
{ | ||
std::vector<cv::KeyPoint> getKeyPoints(const std::vector<Ort::OrtSessionHandler::DataOutputType>& inferenceOutput, | ||
int borderRemove, float confidenceThresh) | ||
{ | ||
std::vector<int> detectorShape(inferenceOutput[0].second.begin() + 1, inferenceOutput[0].second.end()); | ||
|
||
cv::Mat detectorMat(detectorShape.size(), detectorShape.data(), CV_32F, | ||
inferenceOutput[0].first); // 65 x H/8 x W/8 | ||
cv::Mat buffer; | ||
|
||
transposeNDWrapper(detectorMat, {1, 2, 0}, buffer); | ||
buffer.copyTo(detectorMat); // H/8 x W/8 x 65 | ||
|
||
for (int i = 0; i < detectorShape[1]; ++i) { | ||
for (int j = 0; j < detectorShape[2]; ++j) { | ||
Ort::softmax(detectorMat.ptr<float>(i, j), detectorShape[0]); | ||
} | ||
} | ||
detectorMat = detectorMat({cv::Range::all(), cv::Range::all(), cv::Range(0, detectorShape[0] - 1)}) | ||
.clone(); // H/8 x W/8 x 64 | ||
detectorMat = detectorMat.reshape(1, {detectorShape[1], detectorShape[2], 8, 8}); // H/8 x W/8 x 8 x 8 | ||
transposeNDWrapper(detectorMat, {0, 2, 1, 3}, buffer); | ||
buffer.copyTo(detectorMat); // H/8 x 8 x W/8 x 8 | ||
|
||
detectorMat = detectorMat.reshape(1, {detectorShape[1] * 8, detectorShape[2] * 8}); // H x W | ||
|
||
std::vector<cv::KeyPoint> keyPoints; | ||
for (int i = borderRemove; i < detectorMat.rows - borderRemove; ++i) { | ||
auto rowPtr = detectorMat.ptr<float>(i); | ||
for (int j = borderRemove; j < detectorMat.cols - borderRemove; ++j) { | ||
if (rowPtr[j] > confidenceThresh) { | ||
cv::KeyPoint keyPoint; | ||
keyPoint.pt.x = j; | ||
keyPoint.pt.y = i; | ||
keyPoint.response = rowPtr[j]; | ||
keyPoints.emplace_back(keyPoint); | ||
} | ||
} | ||
} | ||
|
||
return keyPoints; | ||
} | ||
|
||
cv::Mat getDescriptors(const cv::Mat& coarseDescriptors, const std::vector<cv::KeyPoint>& keyPoints, int height, | ||
int width, bool alignCorners) | ||
{ | ||
cv::Mat keyPointMat(keyPoints.size(), 2, CV_32F); | ||
|
||
for (int i = 0; i < keyPoints.size(); ++i) { | ||
auto rowPtr = keyPointMat.ptr<float>(i); | ||
rowPtr[0] = 2 * keyPoints[i].pt.y / (height - 1) - 1; | ||
rowPtr[1] = 2 * keyPoints[i].pt.x / (width - 1) - 1; | ||
} | ||
keyPointMat = keyPointMat.reshape(1, {1, 1, static_cast<int>(keyPoints.size()), 2}); | ||
cv::Mat descriptors = bilinearGridSample(coarseDescriptors, keyPointMat, alignCorners); | ||
|
||
return descriptors.reshape(1, {coarseDescriptors.size[1], static_cast<int>(keyPoints.size())}); | ||
} | ||
|
||
std::pair<std::vector<cv::KeyPoint>, cv::Mat> processOneFrame(const Ort::SuperPoint& osh, const cv::Mat& inputImg, | ||
float* dst, int borderRemove, float confidenceThresh, | ||
bool alignCorners) | ||
{ | ||
int origW = inputImg.cols, origH = inputImg.rows; | ||
std::vector<float> originImageSize{static_cast<float>(origH), static_cast<float>(origW)}; | ||
cv::Mat scaledImg; | ||
cv::resize(inputImg, scaledImg, cv::Size(Ort::SuperPoint::IMG_W, Ort::SuperPoint::IMG_H), 0, 0, cv::INTER_CUBIC); | ||
osh.preprocess(dst, scaledImg.data, Ort::SuperPoint::IMG_W, Ort::SuperPoint::IMG_H, Ort::SuperPoint::IMG_CHANNEL); | ||
auto inferenceOutput = osh({dst}); | ||
|
||
std::vector<cv::KeyPoint> keyPoints = getKeyPoints(inferenceOutput, borderRemove, confidenceThresh); | ||
|
||
std::vector<int> descriptorShape(inferenceOutput[1].second.begin(), inferenceOutput[1].second.end()); | ||
cv::Mat coarseDescriptorMat(descriptorShape.size(), descriptorShape.data(), CV_32F, | ||
inferenceOutput[1].first); // 1 x 256 x H/8 x W/8 | ||
|
||
cv::Mat descriptors = | ||
getDescriptors(coarseDescriptorMat, keyPoints, Ort::SuperPoint::IMG_H, Ort::SuperPoint::IMG_W, alignCorners); | ||
|
||
for (auto& keyPoint : keyPoints) { | ||
keyPoint.pt.x *= static_cast<float>(origW) / Ort::SuperPoint::IMG_W; | ||
keyPoint.pt.y *= static_cast<float>(origH) / Ort::SuperPoint::IMG_H; | ||
} | ||
|
||
return {keyPoints, descriptors}; | ||
} | ||
} // namespace |
Oops, something went wrong.