forked from biubug6/Pytorch_Retinaface
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
3 changed files
with
165 additions
and
3 deletions.
There are no files selected for viewing
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,162 @@ | ||
from __future__ import print_function | ||
import os | ||
import argparse | ||
import torch | ||
import torch.backends.cudnn as cudnn | ||
import numpy as np | ||
from data import cfg | ||
from layers.functions.prior_box import PriorBox | ||
from utils.nms.py_cpu_nms import py_cpu_nms | ||
import cv2 | ||
from models.retinaface import RetinaFace | ||
from utils.box_utils import decode, decode_landm | ||
import time | ||
|
||
parser = argparse.ArgumentParser(description='Retinaface') | ||
|
||
parser.add_argument('-m', '--trained_model', default='./weights/Final_Retinaface.pth', | ||
type=str, help='Trained state_dict file path to open') | ||
parser.add_argument('--cpu', action="store_true", default=False, help='Use cpu inference') | ||
parser.add_argument('--confidence_threshold', default=0.05, type=float, help='confidence_threshold') | ||
parser.add_argument('--top_k', default=5000, type=int, help='top_k') | ||
parser.add_argument('--nms_threshold', default=0.3, type=float, help='nms_threshold') | ||
parser.add_argument('--keep_top_k', default=750, type=int, help='keep_top_k') | ||
parser.add_argument('-s', '--save_image', action="store_true", default=True, help='show detection results') | ||
parser.add_argument('--vis_thres', default=0.6, type=float, help='visualization_threshold') | ||
args = parser.parse_args() | ||
|
||
|
||
def check_keys(model, pretrained_state_dict): | ||
ckpt_keys = set(pretrained_state_dict.keys()) | ||
model_keys = set(model.state_dict().keys()) | ||
used_pretrained_keys = model_keys & ckpt_keys | ||
unused_pretrained_keys = ckpt_keys - model_keys | ||
missing_keys = model_keys - ckpt_keys | ||
print('Missing keys:{}'.format(len(missing_keys))) | ||
print('Unused checkpoint keys:{}'.format(len(unused_pretrained_keys))) | ||
print('Used keys:{}'.format(len(used_pretrained_keys))) | ||
assert len(used_pretrained_keys) > 0, 'load NONE from pretrained checkpoint' | ||
return True | ||
|
||
|
||
def remove_prefix(state_dict, prefix): | ||
''' Old style model is stored with all names of parameters sharing common prefix 'module.' ''' | ||
print('remove prefix \'{}\''.format(prefix)) | ||
f = lambda x: x.split(prefix, 1)[-1] if x.startswith(prefix) else x | ||
return {f(key): value for key, value in state_dict.items()} | ||
|
||
|
||
def load_model(model, pretrained_path, load_to_cpu): | ||
print('Loading pretrained model from {}'.format(pretrained_path)) | ||
if load_to_cpu: | ||
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage) | ||
else: | ||
device = torch.cuda.current_device() | ||
pretrained_dict = torch.load(pretrained_path, map_location=lambda storage, loc: storage.cuda(device)) | ||
if "state_dict" in pretrained_dict.keys(): | ||
pretrained_dict = remove_prefix(pretrained_dict['state_dict'], 'module.') | ||
else: | ||
pretrained_dict = remove_prefix(pretrained_dict, 'module.') | ||
check_keys(model, pretrained_dict) | ||
model.load_state_dict(pretrained_dict, strict=False) | ||
return model | ||
|
||
|
||
if __name__ == '__main__': | ||
torch.set_grad_enabled(False) | ||
# net and model | ||
net = RetinaFace(phase="test") | ||
net = load_model(net, args.trained_model, args.cpu) | ||
net.eval() | ||
print('Finished loading model!') | ||
print(net) | ||
cudnn.benchmark = True | ||
device = torch.device("cpu" if args.cpu else "cuda") | ||
net = net.to(device) | ||
|
||
resize = 1 | ||
|
||
# testing begin | ||
for i in range(100): | ||
image_path = "./curve/test.jpg" | ||
img_raw = cv2.imread(image_path, cv2.IMREAD_COLOR) | ||
|
||
img = np.float32(img_raw) | ||
|
||
im_height, im_width, _ = img.shape | ||
scale = torch.Tensor([img.shape[1], img.shape[0], img.shape[1], img.shape[0]]) | ||
img -= (104, 117, 123) | ||
img = img.transpose(2, 0, 1) | ||
img = torch.from_numpy(img).unsqueeze(0) | ||
img = img.to(device) | ||
scale = scale.to(device) | ||
|
||
tic = time.time() | ||
loc, conf, landms = net(img) # forward pass | ||
print('net forward time: {:.4f}'.format(time.time() - tic)) | ||
|
||
priorbox = PriorBox(cfg, image_size=(im_height, im_width)) | ||
priors = priorbox.forward() | ||
priors = priors.to(device) | ||
prior_data = priors.data | ||
boxes = decode(loc.data.squeeze(0), prior_data, cfg['variance']) | ||
boxes = boxes * scale / resize | ||
boxes = boxes.cpu().numpy() | ||
scores = conf.squeeze(0).data.cpu().numpy()[:, 1] | ||
landms = decode_landm(landms.data.squeeze(0), prior_data, cfg['variance']) | ||
scale1 = torch.Tensor([img.shape[3], img.shape[2], img.shape[3], img.shape[2], | ||
img.shape[3], img.shape[2], img.shape[3], img.shape[2], | ||
img.shape[3], img.shape[2]]) | ||
scale1 = scale1.to(device) | ||
landms = landms * scale1 / resize | ||
landms = landms.cpu().numpy() | ||
|
||
# ignore low scores | ||
inds = np.where(scores > args.confidence_threshold)[0] | ||
boxes = boxes[inds] | ||
landms = landms[inds] | ||
scores = scores[inds] | ||
|
||
# keep top-K before NMS | ||
order = scores.argsort()[::-1][:args.top_k] | ||
boxes = boxes[order] | ||
landms = landms[order] | ||
scores = scores[order] | ||
|
||
# do NMS | ||
dets = np.hstack((boxes, scores[:, np.newaxis])).astype(np.float32, copy=False) | ||
keep = py_cpu_nms(dets, args.nms_threshold) | ||
# keep = nms(dets, args.nms_threshold,force_cpu=args.cpu) | ||
dets = dets[keep, :] | ||
landms = landms[keep] | ||
|
||
# keep top-K faster NMS | ||
dets = dets[:args.keep_top_k, :] | ||
landms = landms[:args.keep_top_k, :] | ||
|
||
dets = np.concatenate((dets, landms), axis=1) | ||
|
||
# show image | ||
if args.save_image: | ||
for b in dets: | ||
if b[4] < args.vis_thres: | ||
continue | ||
text = "{:.4f}".format(b[4]) | ||
b = list(map(int, b)) | ||
cv2.rectangle(img_raw, (b[0], b[1]), (b[2], b[3]), (0, 0, 255), 2) | ||
cx = b[0] | ||
cy = b[1] + 12 | ||
cv2.putText(img_raw, text, (cx, cy), | ||
cv2.FONT_HERSHEY_DUPLEX, 0.5, (255, 255, 255)) | ||
|
||
# landms | ||
cv2.circle(img_raw, (b[5], b[6]), 4, (0, 0, 255), 4) | ||
cv2.circle(img_raw, (b[7], b[8]), 4, (0, 255, 255), 4) | ||
cv2.circle(img_raw, (b[9], b[10]), 4, (255, 0, 255), 4) | ||
cv2.circle(img_raw, (b[11], b[12]), 4, (0, 255, 0), 4) | ||
cv2.circle(img_raw, (b[13], b[14]), 4, (255, 0, 0), 4) | ||
# save image | ||
|
||
name = "test.jpg" | ||
cv2.imwrite(name, img_raw) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters