Skip to content

Commit

Permalink
浅谈什么是动态规划以及相关的「股票」算法题
Browse files Browse the repository at this point in the history
  • Loading branch information
MisterBooo committed May 7, 2019
1 parent c647f98 commit 51df1aa
Show file tree
Hide file tree
Showing 4 changed files with 879 additions and 0 deletions.
3 changes: 3 additions & 0 deletions Readme.md
Original file line number Diff line number Diff line change
Expand Up @@ -34,6 +34,9 @@
| 103 | [二叉树的锯齿形层次遍历](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第103号问题:二叉树的锯齿形层次遍历.md) |
| 107 | [二叉树的层次遍历 II](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第107号问题:二叉树的层次遍历II.md) |
| 110 | [平衡二叉树](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第110号问题:平衡二叉树.md) |
| 121 | [买卖股票的最佳时机](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第121号问题:买卖股票的最佳时机.md) |
| 122 | [买卖股票的最佳时机II](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第121号问题:买卖股票的最佳时机II.md) |
| 123 | [买卖股票的最佳时机III](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第121号问题:买卖股票的最佳时机III.md) |
| 125 | [验证回文串](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第125号问题:验证回文串.md) |
| 131 | [分割回文串](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第131号问题:分割回文串.md) |
| 136 | [只出现一次的数字](https://github.com/MisterBooo/LeetCodeAnimation/tree/master/notes/LeetCode第136号问题:只出现一次的数字.md) |
Expand Down
292 changes: 292 additions & 0 deletions notes/LeetCode第121号问题:买卖股票的最佳时机.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,292 @@


# 浅谈什么是动态规划以及相关的「股票」算法题

## 动态规划

### 1 概念

  **动态规划**算法是通过拆分问题,定义问题状态和状态之间的关系,使得问题能够以递推(或者说分治)的方式去解决。在学习动态规划之前需要明确掌握几个重要概念。

  **阶段:**对于一个完整的问题过程,适当的切分为若干个相互联系的子问题,每次在求解一个子问题,则对应一个阶段,整个问题的求解转化为按照阶段次序去求解。

  **状态:**状态表示每个阶段开始时所处的客观条件,即在求解子问题时的已知条件。状态描述了研究的问题过程中的状况。

  **决策:**决策表示当求解过程处于某一阶段的某一状态时,可以根据当前条件作出不同的选择,从而确定下一个阶段的状态,这种选择称为决策。

  **策略:**由所有阶段的决策组成的决策序列称为全过程策略,简称策略。

  **最优策略:**在所有的策略中,找到代价最小,性能最优的策略,此策略称为最优策略。

  **状态转移方程:**状态转移方程是确定两个相邻阶段状态的演变过程,描述了状态之间是如何演变的。

### 2 使用场景

能采用动态规划求解的问题的一般要具有 3 个性质:

  (1)**最优化**:如果问题的最优解所包含的子问题的解也是最优的,就称该问题具有最优子结构,即满足最优化原理。子问题的局部最优将导致整个问题的全局最优。换句话说,就是问题的一个最优解中一定包含子问题的一个最优解。

  (2)**无后效性**:即某阶段状态一旦确定,就不受这个状态以后决策的影响。也就是说,某状态以后的过程不会影响以前的状态,只与当前状态有关,与其他阶段的状态无关,特别是与未发生的阶段的状态无关。

   (3)**重叠子问题**:即子问题之间是不独立的,一个子问题在下一阶段决策中可能被多次使用到。(该性质并不是动态规划适用的必要条件,但是如果没有这条性质,动态规划算法同其他算法相比就不具备优势)

### 3 算法流程

  (1)划分阶段:按照问题的时间或者空间特征将问题划分为若干个阶段。
  (2)确定状态以及状态变量:将问题的不同阶段时期的不同状态描述出来。
  (3)确定决策并写出状态转移方程:根据相邻两个阶段的各个状态之间的关系确定决策。
  (4)寻找边界条件:一般而言,状态转移方程是递推式,必须有一个递推的边界条件。
  (5)设计程序,解决问题

## 实战练习

下面的三道算法题都是来源于 LeetCode 上与股票买卖相关的问题 ,我们按照 **动态规划** 的算法流程来处理该类问题。

**股票买卖**这一类的问题,都是给一个输入数组,里面的每个元素表示的是每天的股价,并且你只能持有一支股票(也就是你必须在再次购买前出售掉之前的股票),一般来说有下面几种问法:

- 只能买卖一次
- 可以买卖无数次
- 可以买卖 k 次

需要你设计一个算法去获取最大的利润。

## 买卖股票的最佳时机

题目来源于 LeetCode 上第 121 号问题:买卖股票的最佳时机。题目难度为 Easy,目前通过率为 49.4% 。

### 题目描述

给定一个数组,它的第 *i* 个元素是一支给定股票第 *i* 天的价格。

如果你最多只允许完成一笔交易(即买入和卖出一支股票),设计一个算法来计算你所能获取的最大利润。

注意你不能在买入股票前卖出股票。

**示例 1:**

```
输入: [7,1,5,3,6,4]
输出: 5
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 5 天(股票价格 = 6)的时候卖出,最大利润 = 6-1 = 5 。
注意利润不能是 7-1 = 6, 因为卖出价格需要大于买入价格。
```

**示例 2:**

```
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
```

### 题目解析

我们按照动态规划的思想来思考这道问题。

#### 状态

**买入(buy)****卖出(sell)** 这两种状态。

#### 转移方程

对于买来说,买之后可以卖出(进入卖状态),也可以不再进行股票交易(保持买状态)。

对于卖来说,卖出股票后不在进行股票交易(还在卖状态)。

只有在手上的钱才算钱,手上的钱购买当天的股票后相当于亏损。也就是说当天买的话意味着损失`-prices[i]`,当天卖的话意味着增加`prices[i]`,当天卖出总的收益就是 `buy+prices[i]`

所以我们只要考虑当天买和之前买哪个收益更高,当天卖和之前卖哪个收益更高。

* buy = max(buy, -price[i]) (注意:根据定义 buy 是负数)
* sell = max(sell, prices[i] + buy)

#### 边界

第一天 `buy = -prices[0]`, `sell = 0`,最后返回 sell 即可。

###代码实现

```java
class Solution {
public int maxProfit(int[] prices) {
if(prices.length <= 1)
return 0;
int buy = -prices[0], sell = 0;
for(int i = 1; i < prices.length; i++) {
buy = Math.max(buy, -prices[i]);
sell = Math.max(sell, prices[i] + buy);

}
return sell;
}
}
```



## 买卖股票的最佳时机 II

题目来源于 LeetCode 上第 122 号问题:买卖股票的最佳时机 II。题目难度为 Easy,目前通过率为 53.0% 。

### 题目描述

给定一个数组,它的第 *i* 个元素是一支给定股票第 *i* 天的价格。

设计一个算法来计算你所能获取的最大利润。你可以尽可能地完成更多的交易(多次买卖一支股票)。

**注意:**你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

**示例 1:**

```
输入: [7,1,5,3,6,4]
输出: 7
解释: 在第 2 天(股票价格 = 1)的时候买入,在第 3 天(股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
随后,在第 4 天(股票价格 = 3)的时候买入,在第 5 天(股票价格 = 6)的时候卖出, 这笔交易所能获得利润 = 6-3 = 3 。
```

**示例 2:**

```
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
```

**示例 3:**

```
输入: [7,6,4,3,1]
输出: 0
解释: 在这种情况下, 没有交易完成, 所以最大利润为 0。
```

### 题目解析

#### 状态

**买入(buy)****卖出(sell)** 这两种状态。

#### 转移方程

对比上题,这里可以有无限次的买入和卖出,也就是说 **买入** 状态之前可拥有 **卖出** 状态,所以买入的转移方程需要变化。

- buy = max(buy, sell - price[i])
- sell = max(sell, buy + prices[i] )

#### 边界

第一天 `buy = -prices[0]`, `sell = 0`,最后返回 sell 即可。

### 代码实现

```java
class Solution {
public int maxProfit(int[] prices) {
if(prices.length <= 1)
return 0;
int buy = -prices[0], sell = 0;
for(int i = 1; i < prices.length; i++) {
sell = Math.max(sell, prices[i] + buy);
buy = Math.max( buy,sell - prices[i]);
}
return sell;
}
}
```



## 买卖股票的最佳时机 III

题目来源于 LeetCode 上第 123 号问题:买卖股票的最佳时机 III。题目难度为 Hard,目前通过率为 36.1% 。

### 题目描述

给定一个数组,它的第 *i* 个元素是一支给定的股票在第 *i* 天的价格。

设计一个算法来计算你所能获取的最大利润。你最多可以完成 *两笔* 交易。

**注意:** 你不能同时参与多笔交易(你必须在再次购买前出售掉之前的股票)。

**示例 1:**

```
输入: [3,3,5,0,0,3,1,4]
输出: 6
解释: 在第 4 天(股票价格 = 0)的时候买入,在第 6 天(股票价格 = 3)的时候卖出,这笔交易所能获得利润 = 3-0 = 3 。
随后,在第 7 天(股票价格 = 1)的时候买入,在第 8 天 (股票价格 = 4)的时候卖出,这笔交易所能获得利润 = 4-1 = 3 。
```

**示例 2:**

```
输入: [1,2,3,4,5]
输出: 4
解释: 在第 1 天(股票价格 = 1)的时候买入,在第 5 天 (股票价格 = 5)的时候卖出, 这笔交易所能获得利润 = 5-1 = 4 。
注意你不能在第 1 天和第 2 天接连购买股票,之后再将它们卖出。
因为这样属于同时参与了多笔交易,你必须在再次购买前出售掉之前的股票。
```

**示例 3:**

```
输入: [7,6,4,3,1]
输出: 0
解释: 在这个情况下, 没有交易完成, 所以最大利润为 0。
```

### 题目解析

这里限制了最多两笔交易。

#### 状态

**第一次买入(fstBuy)****第一次卖出(fstSell)****第二次买入(secBuy)****第二次卖出(secSell)** 这四种状态。

#### 转移方程

这里最多两次买入和两次卖出,也就是说 **买入** 状态之前可拥有 **卖出** 状态,**卖出** 状态之前可拥有 **买入** 状态,所以买入和卖出的转移方程都需要变化。

- fstBuy = max(fstBuy , -price[i])
- fstSell = max(fstSell,fstBuy + prices[i] )
- secBuy = max(secBuy ,fstSell -price[i]) (受第一次卖出状态的影响)
- secSell = max(secSell ,secBuy + prices[i] )

#### 边界

* 一开始 `fstBuy = -prices[0]`

* 买入后直接卖出,`fstSell = 0`
* 买入后再卖出再买入,`secBuy - prices[0]`
* 买入后再卖出再买入再卖出,`secSell = 0`

最后返回 secSell 。

### 代码实现

```java
class Solution {
public int maxProfit(int[] prices) {
int fstBuy = Integer.MIN_VALUE, fstSell = 0;
int secBuy = Integer.MIN_VALUE, secSell = 0;
for(int i = 0; i < prices.length; i++) {
fstBuy = Math.max(fstBuy, -prices[i]);
fstSell = Math.max(fstSell, fstBuy + prices[i]);
secBuy = Math.max(secBuy, fstSell - prices[i]);
secSell = Math.max(secSell, secBuy + prices[i]);
}
return secSell;

}
}
```



###



Loading

0 comments on commit 51df1aa

Please sign in to comment.