yolov3 using tensorflow
python3 convert_tfrecord.py --dataset_txt train_gt.txt --tfrecord_path_prefix ../train_data/train --basic_path ./DETRAC-train-data/Insight-MVT_Annotation_Train/
- dataset_txt: filename x1 y1 x2 y2 class x1 y1 x2 y2 class
- tfrecord_path_prefix: tfrecord file path
- basic_path: path to data dir
python3 kmeans.py --dataset_txt train_ign.txt --anchors_txt anchors.txt --basic_path DETRAC-train-data/Insight-MVT_Annotation_Train/
car 0
person 1
...
IMAGE_H, IMAGE_W = 416, 416
BATCH_SIZE = 8
STEPS = 25000
LR = 0.001 # if Nan, set 0.0005, 0.0001
DECAY_STEPS = 100
DECAY_RATE = 0.9
SHUFFLE_SIZE = 200
CLASSES = utils.read_coco_names('./data/class.names')
ANCHORS = utils.get_anchors('./data/anchors.txt', IMAGE_H, IMAGE_W)
NUM_CLASSES = len(CLASSES)
EVAL_INTERNAL = 100
SAVE_INTERNAL = 500
TRAIN_TFRECORD = "./data/train_data/train.tfrecords"
TEST_TFRECORD = "./data/val_data/val.tfrecords"
python3 train.py
python3 test.py