-
Notifications
You must be signed in to change notification settings - Fork 1
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
4e81a5e
commit d4c0c82
Showing
38 changed files
with
6,246 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,8 @@ | ||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
from .default import _C as config | ||
from .default import update_config | ||
from .models import MODEL_EXTRAS |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,154 @@ | ||
|
||
|
||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
|
||
from yacs.config import CfgNode as CN | ||
|
||
|
||
_C = CN() | ||
|
||
_C.OUTPUT_DIR = '' | ||
_C.LOG_DIR = '' | ||
_C.GPUS = (0,) #修改 | ||
_C.WORKERS = 1 | ||
_C.PRINT_FREQ = 10 | ||
_C.AUTO_RESUME = False | ||
_C.PIN_MEMORY = True | ||
_C.RANK = 0 | ||
_C.sub_model_index = 0 | ||
|
||
# Cudnn related params | ||
_C.CUDNN = CN() | ||
_C.CUDNN.BENCHMARK = True | ||
_C.CUDNN.DETERMINISTIC = False | ||
_C.CUDNN.ENABLED = True | ||
|
||
# common params for NETWORK | ||
_C.MODEL = CN() | ||
_C.MODEL.NAME = 'seg_hrnet_without_interpolate ' | ||
_C.MODEL.PRETRAINED = '' | ||
_C.MODEL.ALIGN_CORNERS = True | ||
_C.MODEL.NUM_OUTPUTS = 1 | ||
_C.MODEL.EXTRA = CN(new_allowed=True) | ||
|
||
|
||
_C.MODEL.OCR = CN() | ||
_C.MODEL.OCR.MID_CHANNELS = 512 | ||
_C.MODEL.OCR.KEY_CHANNELS = 256 | ||
_C.MODEL.OCR.DROPOUT = 0.05 | ||
_C.MODEL.OCR.SCALE = 1 | ||
|
||
_C.LOSS = CN() | ||
_C.LOSS.USE_OHEM = False | ||
_C.LOSS.OHEMTHRES = 0.9 | ||
_C.LOSS.OHEMKEEP = 100000 | ||
_C.LOSS.CLASS_BALANCE = False | ||
_C.LOSS.BALANCE_WEIGHTS = [1] | ||
######## ACW_loss ######## | ||
_C.LOSS.USE_ACW = False | ||
######## ACW_loss ######## | ||
|
||
######## Attention ######## | ||
_C.ATTENTION = CN() | ||
_C.ATTENTION.HSN_POSITION = '0' | ||
# 1, 2, 3, 1+2+3, 2+3 | ||
_C.ATTENTION.PSNL_POSITION = '0' | ||
# 1, 2, 3, 1+2+3, 2+3 | ||
_C.ATTENTION.ORDER = '0' | ||
# H, P, HP, PH, H/P | ||
######## Attention ######## | ||
|
||
# DATASET related params | ||
_C.DATASET = CN() | ||
_C.DATASET.ROOT = '' | ||
_C.DATASET.DATASET = 'cityscapes' | ||
_C.DATASET.NUM_CLASSES = 11 #修改 | ||
_C.DATASET.TRAIN_SET = 'list/cityscapes/train.lst' | ||
_C.DATASET.EXTRA_TRAIN_SET = '' | ||
_C.DATASET.TEST_SET = 'list/cityscapes/val.lst' | ||
|
||
# training | ||
_C.TRAIN = CN() | ||
|
||
_C.TRAIN.FREEZE_LAYERS = '' | ||
_C.TRAIN.FREEZE_EPOCHS = -1 | ||
_C.TRAIN.NONBACKBONE_KEYWORDS = [] | ||
_C.TRAIN.NONBACKBONE_MULT = 10 | ||
|
||
_C.TRAIN.IMAGE_SIZE = [64, 64] # width * height #修改 | ||
_C.TRAIN.BASE_SIZE = 2048 | ||
_C.TRAIN.DOWNSAMPLERATE = 1 | ||
_C.TRAIN.FLIP = True | ||
_C.TRAIN.MULTI_SCALE = False | ||
_C.TRAIN.SCALE_FACTOR = 16 | ||
|
||
_C.TRAIN.RANDOM_BRIGHTNESS = False | ||
_C.TRAIN.RANDOM_BRIGHTNESS_SHIFT_VALUE = 10 | ||
|
||
_C.TRAIN.LR_FACTOR = 0.1 | ||
_C.TRAIN.LR_STEP = [90, 110] | ||
_C.TRAIN.LR = 0.01 | ||
_C.TRAIN.EXTRA_LR = 0.001 | ||
|
||
_C.TRAIN.OPTIMIZER = 'sgd' | ||
_C.TRAIN.MOMENTUM = 0.9 | ||
_C.TRAIN.WD = 0.0001 | ||
_C.TRAIN.NESTEROV = False | ||
_C.TRAIN.IGNORE_LABEL = -1 | ||
|
||
_C.TRAIN.BEGIN_EPOCH = 0 | ||
_C.TRAIN.END_EPOCH = 1000 | ||
_C.TRAIN.EXTRA_EPOCH = 0 | ||
|
||
_C.TRAIN.RESUME = False | ||
|
||
_C.TRAIN.BATCH_SIZE_PER_GPU = 2 | ||
_C.TRAIN.SHUFFLE = True | ||
# only using some training samples | ||
_C.TRAIN.NUM_SAMPLES = 0 | ||
|
||
# testing | ||
_C.TEST = CN() | ||
|
||
_C.TEST.IMAGE_SIZE = [64, 64] # width * height #修改 | ||
_C.TEST.BASE_SIZE = 2048 | ||
|
||
_C.TEST.BATCH_SIZE_PER_GPU = 1024 | ||
# only testing some samples | ||
_C.TEST.NUM_SAMPLES = 0 | ||
|
||
_C.TEST.MODEL_FILE = '/home/xieweiying/HRNet-attention_v2_64/tools/output/cityscapes/seg_hrnet_w48_train_512x1024_sgd_lr1e-2_wd5e-4_bs_12_epoch484/最原始模型90epochv264x64/best.pth' #修改 | ||
_C.TEST.FLIP_TEST = True | ||
_C.TEST.MULTI_SCALE = False | ||
_C.TEST.SCALE_LIST = [1] | ||
|
||
_C.TEST.OUTPUT_INDEX = -1 | ||
|
||
# debug | ||
_C.DEBUG = CN() | ||
_C.DEBUG.DEBUG = False | ||
_C.DEBUG.SAVE_BATCH_IMAGES_GT = False | ||
_C.DEBUG.SAVE_BATCH_IMAGES_PRED = False | ||
_C.DEBUG.SAVE_HEATMAPS_GT = False | ||
_C.DEBUG.SAVE_HEATMAPS_PRED = False | ||
|
||
|
||
def update_config(cfg, args): | ||
cfg.defrost() | ||
|
||
cfg.merge_from_file(args.cfg) | ||
cfg.merge_from_list(args.opts) | ||
|
||
cfg.freeze() | ||
|
||
|
||
if __name__ == '__main__': | ||
import sys | ||
with open(sys.argv[1], 'w') as f: | ||
print(_C, file=f) | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,42 @@ | ||
|
||
|
||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
from yacs.config import CfgNode as CN | ||
|
||
# high_resoluton_net related params for segmentation | ||
HIGH_RESOLUTION_NET = CN() | ||
HIGH_RESOLUTION_NET.PRETRAINED_LAYERS = ['*'] | ||
HIGH_RESOLUTION_NET.STEM_INPLANES = 64 | ||
HIGH_RESOLUTION_NET.FINAL_CONV_KERNEL = 1 | ||
HIGH_RESOLUTION_NET.WITH_HEAD = True | ||
|
||
HIGH_RESOLUTION_NET.STAGE2 = CN() | ||
HIGH_RESOLUTION_NET.STAGE2.NUM_MODULES = 1 | ||
HIGH_RESOLUTION_NET.STAGE2.NUM_BRANCHES = 2 | ||
HIGH_RESOLUTION_NET.STAGE2.NUM_BLOCKS = [4, 4] | ||
HIGH_RESOLUTION_NET.STAGE2.NUM_CHANNELS = [32, 64] | ||
HIGH_RESOLUTION_NET.STAGE2.BLOCK = 'BASIC' | ||
HIGH_RESOLUTION_NET.STAGE2.FUSE_METHOD = 'SUM' | ||
|
||
HIGH_RESOLUTION_NET.STAGE3 = CN() | ||
HIGH_RESOLUTION_NET.STAGE3.NUM_MODULES = 1 | ||
HIGH_RESOLUTION_NET.STAGE3.NUM_BRANCHES = 3 | ||
HIGH_RESOLUTION_NET.STAGE3.NUM_BLOCKS = [4, 4, 4] | ||
HIGH_RESOLUTION_NET.STAGE3.NUM_CHANNELS = [32, 64, 128] | ||
HIGH_RESOLUTION_NET.STAGE3.BLOCK = 'BASIC' | ||
HIGH_RESOLUTION_NET.STAGE3.FUSE_METHOD = 'SUM' | ||
|
||
HIGH_RESOLUTION_NET.STAGE4 = CN() | ||
HIGH_RESOLUTION_NET.STAGE4.NUM_MODULES = 1 | ||
HIGH_RESOLUTION_NET.STAGE4.NUM_BRANCHES = 4 | ||
HIGH_RESOLUTION_NET.STAGE4.NUM_BLOCKS = [4, 4, 4, 4] | ||
HIGH_RESOLUTION_NET.STAGE4.NUM_CHANNELS = [32, 64, 128, 256] | ||
HIGH_RESOLUTION_NET.STAGE4.BLOCK = 'BASIC' | ||
HIGH_RESOLUTION_NET.STAGE4.FUSE_METHOD = 'SUM' | ||
|
||
MODEL_EXTRAS = { | ||
'seg_hrnet': HIGH_RESOLUTION_NET, | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,126 @@ | ||
import numpy as np | ||
from sklearn.metrics import confusion_matrix | ||
|
||
class _StreamMetrics(object): | ||
def __init__(self): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def update(self, gt, pred): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def get_results(self): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def to_str(self, metrics): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
def reset(self): | ||
""" Overridden by subclasses """ | ||
raise NotImplementedError() | ||
|
||
class StreamSegMetrics(_StreamMetrics): | ||
""" | ||
Stream Metrics for Semantic Segmentation Task | ||
""" | ||
def __init__(self, n_classes): | ||
self.n_classes = n_classes | ||
self.confusion_matrix = np.zeros((n_classes, n_classes)) | ||
|
||
def update(self, label_trues, label_preds): | ||
for lt, lp in zip(label_trues, label_preds): | ||
self.confusion_matrix += self._fast_hist( lt.flatten(), lp.flatten() ) | ||
|
||
@staticmethod | ||
def to_str(results): | ||
string = "\n" | ||
for k, v in results.items(): | ||
if k!="Class IoU": | ||
string += "%s: %f\n"%(k, v) | ||
else: | ||
for i in range(len(v)): | ||
string += "%s_%d: %f\n"%(k,i,v[i]) | ||
#string += "%s_%d\n"%(k,i) | ||
#string+='Class IoU:\n' | ||
#for k, v in results['Class IoU'].items(): | ||
# string += "\tclass %d: %f\n"%(k, v) | ||
return string | ||
|
||
def _fast_hist(self, label_true, label_pred): | ||
mask = (label_true >= 0) & (label_true < self.n_classes) | ||
hist = np.bincount( | ||
self.n_classes * label_true[mask].astype(int) + label_pred[mask], | ||
minlength=self.n_classes ** 2, | ||
).reshape(self.n_classes, self.n_classes) | ||
return hist | ||
|
||
def get_results(self): | ||
"""Returns accuracy score evaluation result. | ||
- overall accuracy | ||
- mean accuracy | ||
- mean IU | ||
- fwavacc | ||
""" | ||
hist = self.confusion_matrix | ||
acc = np.diag(hist).sum() / hist.sum() | ||
acc_cls = np.diag(hist) / hist.sum(axis=1) | ||
acc_cls = np.nanmean(acc_cls) | ||
iu = np.diag(hist) / (hist.sum(axis=1) + hist.sum(axis=0) - np.diag(hist)) | ||
mean_iu = np.nanmean(iu) | ||
freq = hist.sum(axis=1) / hist.sum() | ||
freq[0]=0 | ||
freq[2]=0 | ||
freq[4]=0 | ||
freq[5]=0 | ||
freq[8]=0 | ||
freq[10]=0 | ||
freq = freq/freq.sum() | ||
fwavacc = (freq[freq > 0] * iu[freq > 0]).sum() | ||
#cls_iu = dict(zip(range(self.n_classes), iu)) | ||
cls_iu = [] | ||
for i in range(len(iu)): | ||
iu_i = iu[i] | ||
cls_iu.append(iu_i) | ||
cls_iu = np.array(cls_iu) | ||
return { | ||
"Overall Acc": acc, | ||
"Mean Acc": acc_cls, | ||
"FreqW Acc": fwavacc, | ||
"Mean IoU": mean_iu, | ||
"Class IoU": cls_iu, | ||
} | ||
|
||
def reset(self): | ||
self.confusion_matrix = np.zeros((self.n_classes, self.n_classes)) | ||
|
||
class AverageMeter(object): | ||
"""Computes average values""" | ||
def __init__(self): | ||
self.book = dict() | ||
|
||
def reset_all(self): | ||
self.book.clear() | ||
|
||
def reset(self, id): | ||
item = self.book.get(id, None) | ||
if item is not None: | ||
item[0] = 0 | ||
item[1] = 0 | ||
|
||
def update(self, id, val): | ||
record = self.book.get(id, None) | ||
if record is None: | ||
self.book[id] = [val, 1] | ||
else: | ||
record[0]+=val | ||
record[1]+=1 | ||
|
||
def get_results(self, id): | ||
record = self.book.get(id, None) | ||
assert record is not None | ||
return record[0] / record[1] | ||
|
Oops, something went wrong.