Skip to content

ieshanvaidya/Improved-GAN

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

7 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Improved-GAN

PyTorch implementation of the paper Improved Techniques for Training GANs for MNIST.

Based on openai code along with implementation of Sleepychord in PyTorch.

Usage

usage: main.py [-h] [--dataroot DATAROOT] [--savedir SAVEDIR] [--workers WORKERS]
               [--nexamples NEXAMPLES] [--batch_size BATCHSIZE] [--image_size IMAGESIZE] [--nz NZ]
               [--epochs EPOCHS] [--lr LR] [--beta1 BETA1]
               [--cuda] [--ngpu NGPU] [--manual_seed MANUALSEED] [--resume]

optional arguments:
  -h, --help                   show this help message and exit
  --dataroot DATAROOT          path to dataset, default=data
  --savedir SAVEDIR            path for saving models and logs, default=log
  --workers WORKERS            number of data loading workers, default=2
  --nexamples NEXAMPLES        number of examples per class to use as supervised data, default=10
  --batch_size BATCHSIZE       input batch size, default=64
  --image_size IMAGESIZE       the height / width of the input image to network, default=28
  --nz NZ                      size of the latent z vector, default=100
  --epochs EPOCHS              number of epochs to train for, default=10
  --lr LR                      learning rate, default=0.003
  --beta1 BETA1                beta1 for adam. default=0.5
  --cuda                       enables cuda
  --ngpu NGPU                  number of GPUs to use
  --manual_seed MANUALSEED     seed for random number generator
  --resume                     resume from last checkpoint, requires generator.pth and discriminator.pth in savedir

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages