PyTorch implementation of the paper Improved Techniques for Training GANs for MNIST.
Based on openai code along with implementation of Sleepychord in PyTorch.
usage: main.py [-h] [--dataroot DATAROOT] [--savedir SAVEDIR] [--workers WORKERS]
[--nexamples NEXAMPLES] [--batch_size BATCHSIZE] [--image_size IMAGESIZE] [--nz NZ]
[--epochs EPOCHS] [--lr LR] [--beta1 BETA1]
[--cuda] [--ngpu NGPU] [--manual_seed MANUALSEED] [--resume]
optional arguments:
-h, --help show this help message and exit
--dataroot DATAROOT path to dataset, default=data
--savedir SAVEDIR path for saving models and logs, default=log
--workers WORKERS number of data loading workers, default=2
--nexamples NEXAMPLES number of examples per class to use as supervised data, default=10
--batch_size BATCHSIZE input batch size, default=64
--image_size IMAGESIZE the height / width of the input image to network, default=28
--nz NZ size of the latent z vector, default=100
--epochs EPOCHS number of epochs to train for, default=10
--lr LR learning rate, default=0.003
--beta1 BETA1 beta1 for adam. default=0.5
--cuda enables cuda
--ngpu NGPU number of GPUs to use
--manual_seed MANUALSEED seed for random number generator
--resume resume from last checkpoint, requires generator.pth and discriminator.pth in savedir