forked from vladmandic/human
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
443cb24
commit ceaff32
Showing
4 changed files
with
146 additions
and
162 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -12,12 +12,13 @@ const userConfig = { | |
backend: 'wasm', | ||
async: false, | ||
warmup: 'none', | ||
cacheSimilarity: 0, | ||
debug: true, | ||
modelBasePath: '../../models/', | ||
// wasmPath: 'https://cdn.jsdelivr.net/npm/@tensorflow/[email protected]/dist/', | ||
face: { | ||
enabled: true, | ||
detector: { rotation: true, return: true }, | ||
detector: { rotation: true, return: true, maxDetected: 20 }, | ||
mesh: { enabled: true }, | ||
embedding: { enabled: false }, | ||
iris: { enabled: false }, | ||
|
@@ -36,8 +37,7 @@ const human = new Human(userConfig); // new instance of human | |
const all = []; // array that will hold all detected faces | ||
let db = []; // array that holds all known faces | ||
|
||
const minScore = 0.6; | ||
const minConfidence = 0.8; | ||
const minScore = 0.4; | ||
|
||
function log(...msg) { | ||
const dt = new Date(); | ||
|
@@ -46,45 +46,48 @@ function log(...msg) { | |
console.log(ts, ...msg); | ||
} | ||
|
||
async function getFaceDB() { | ||
async function loadFaceMatchDB() { | ||
// download db with known faces | ||
try { | ||
let res = await fetch('/demo/facematch/faces.json'); | ||
if (!res || !res.ok) res = await fetch('/human/demo/facematch/faces.json'); | ||
db = (res && res.ok) ? await res.json() : []; | ||
for (const rec of db) { | ||
rec.embedding = rec.embedding.map((a) => parseFloat(a.toFixed(4))); | ||
} | ||
log('Loaded Faces DB:', db); | ||
} catch (err) { | ||
log('Could not load faces database', err); | ||
} | ||
} | ||
|
||
async function analyze(face) { | ||
// refresh faces database | ||
await getFaceDB(); | ||
|
||
async function SelectFaceCanvas(face) { | ||
// if we have face image tensor, enhance it and display it | ||
let embedding; | ||
if (face.tensor) { | ||
const enhanced = human.enhance(face); | ||
const desc = document.getElementById('desc'); | ||
desc.innerText = `{"name":"unknown", "source":"${face.fileName}", "embedding":[${face.embedding}]},`; | ||
const embedding = face.embedding.map((a) => parseFloat(a.toFixed(4))); | ||
navigator.clipboard.writeText(`{"name":"unknown", "source":"${face.fileName}", "embedding":[${embedding}]},`); | ||
if (enhanced) { | ||
const c = document.getElementById('orig'); | ||
const squeeze = human.tf.div(human.tf.squeeze(enhanced), 255); | ||
await human.tf.browser.toPixels(squeeze, c); | ||
const squeeze = human.tf.squeeze(enhanced); | ||
const normalize = human.tf.div(squeeze, 255); | ||
await human.tf.browser.toPixels(normalize, c); | ||
human.tf.dispose(enhanced); | ||
human.tf.dispose(squeeze); | ||
human.tf.dispose(normalize); | ||
const ctx = c.getContext('2d'); | ||
ctx.font = 'small-caps 0.4rem "Lato"'; | ||
ctx.fillStyle = 'rgba(255, 255, 255, 1)'; | ||
} | ||
const person = await human.match(face.embedding, db); | ||
log('Match:', person); | ||
document.getElementById('desc').innerHTML = ` | ||
${face.fileName}<br> | ||
Match: ${Math.round(1000 * person.similarity) / 10}% ${person.name} | ||
`; | ||
embedding = face.embedding.map((a) => parseFloat(a.toFixed(4))); | ||
navigator.clipboard.writeText(`{"name":"unknown", "source":"${face.fileName}", "embedding":[${embedding}]},`); | ||
} | ||
|
||
// loop through all canvases that contain faces | ||
const canvases = document.getElementsByClassName('face'); | ||
let time = 0; | ||
for (const canvas of canvases) { | ||
// calculate similarity from selected face to current one in the loop | ||
const current = all[canvas.tag.sample][canvas.tag.face]; | ||
|
@@ -103,30 +106,36 @@ async function analyze(face) { | |
ctx.fillText(`${current.age}y ${(100 * (current.genderScore || 0)).toFixed(1)}% ${current.gender}`, 4, canvas.height - 6); | ||
// identify person | ||
ctx.font = 'small-caps 1rem "Lato"'; | ||
const start = performance.now(); | ||
const person = await human.match(current.embedding, db); | ||
if (person.similarity && person.similarity > minScore && current.confidence > minConfidence) ctx.fillText(`${(100 * person.similarity).toFixed(1)}% ${person.name}`, 4, canvas.height - 30); | ||
time += (performance.now() - start); | ||
if (person.similarity && person.similarity > minScore) ctx.fillText(`DB: ${(100 * person.similarity).toFixed(1)}% ${person.name}`, 4, canvas.height - 30); | ||
} | ||
|
||
log('Analyzed:', 'Face:', canvases.length, 'DB:', db.length, 'Time:', time); | ||
// sort all faces by similarity | ||
const sorted = document.getElementById('faces'); | ||
[...sorted.children] | ||
.sort((a, b) => parseFloat(b.title) - parseFloat(a.title)) | ||
.forEach((canvas) => sorted.appendChild(canvas)); | ||
} | ||
|
||
async function faces(index, res, fileName) { | ||
async function AddFaceCanvas(index, res, fileName) { | ||
all[index] = res.face; | ||
let ok = false; | ||
for (const i in res.face) { | ||
if (res.face[i].mesh.length === 0) continue; | ||
ok = true; | ||
all[index][i].fileName = fileName; | ||
const canvas = document.createElement('canvas'); | ||
canvas.tag = { sample: index, face: i }; | ||
canvas.tag = { sample: index, face: i, source: fileName }; | ||
canvas.width = 200; | ||
canvas.height = 200; | ||
canvas.className = 'face'; | ||
// mouse click on any face canvas triggers analysis | ||
canvas.addEventListener('click', (evt) => { | ||
log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, all[evt.target.tag.sample][evt.target.tag.face]); | ||
analyze(all[evt.target.tag.sample][evt.target.tag.face]); | ||
log('Select:', 'Image:', evt.target.tag.sample, 'Face:', evt.target.tag.face, 'Source:', evt.target.tag.source, all[evt.target.tag.sample][evt.target.tag.face]); | ||
SelectFaceCanvas(all[evt.target.tag.sample][evt.target.tag.face]); | ||
}); | ||
// if we actually got face image tensor, draw canvas with that face | ||
if (res.face[i].tensor) { | ||
|
@@ -138,19 +147,20 @@ async function faces(index, res, fileName) { | |
ctx.fillText(`${res.face[i].age}y ${(100 * (res.face[i].genderScore || 0)).toFixed(1)}% ${res.face[i].gender}`, 4, canvas.height - 6); | ||
const person = await human.match(res.face[i].embedding, db); | ||
ctx.font = 'small-caps 1rem "Lato"'; | ||
if (person.similarity && person.similarity > minScore && res.face[i].confidence > minConfidence) ctx.fillText(`${(100 * person.similarity).toFixed(1)}% ${person.name}`, 4, canvas.height - 30); | ||
if (person.similarity && person.similarity > minScore) ctx.fillText(`${(100 * person.similarity).toFixed(1)}% ${person.name}`, 4, canvas.height - 30); | ||
} | ||
} | ||
return ok; | ||
} | ||
|
||
async function process(index, image) { | ||
async function AddImageElement(index, image) { | ||
return new Promise((resolve) => { | ||
const img = new Image(128, 128); | ||
img.onload = () => { // must wait until image is loaded | ||
human.detect(img, userConfig).then(async (res) => { | ||
await faces(index, res, image); // then wait until image is analyzed | ||
log('Add image:', index + 1, image, 'faces:', res.face.length); | ||
document.getElementById('images').appendChild(img); // and finally we can add it | ||
const ok = await AddFaceCanvas(index, res, image); // then wait until image is analyzed | ||
// log('Add image:', index + 1, image, 'faces:', res.face.length); | ||
if (ok) document.getElementById('images').appendChild(img); // and finally we can add it | ||
resolve(true); | ||
}); | ||
}; | ||
|
@@ -163,7 +173,7 @@ async function process(index, image) { | |
}); | ||
} | ||
|
||
async function createDB() { | ||
async function createFaceMatchDB() { | ||
log('Creating Faces DB...'); | ||
for (const image of all) { | ||
for (const face of image) db.push({ name: 'unknown', source: face.fileName, embedding: face.embedding }); | ||
|
@@ -172,62 +182,49 @@ async function createDB() { | |
} | ||
|
||
async function main() { | ||
/* | ||
window.addEventListener('unhandledrejection', (evt) => { | ||
// eslint-disable-next-line no-console | ||
console.error(evt.reason || evt); | ||
document.getElementById('list').innerHTML = evt?.reason?.message || evt?.reason || evt; | ||
evt.preventDefault(); | ||
}); | ||
*/ | ||
|
||
// pre-load human models | ||
await human.load(); | ||
|
||
let images = []; | ||
let dir = []; | ||
// load face descriptor database | ||
await getFaceDB(); | ||
await loadFaceMatchDB(); | ||
|
||
// enumerate all sample images in /assets | ||
const res = await fetch('/samples/groups'); | ||
const res = await fetch('/samples/in'); | ||
dir = (res && res.ok) ? await res.json() : []; | ||
images = images.concat(dir.filter((img) => (img.endsWith('.jpg') && img.includes('sample')))); | ||
|
||
// could not dynamically enumerate images so using static list | ||
if (images.length === 0) { | ||
images = [ | ||
'groups/group1.jpg', | ||
'groups/group2.jpg', | ||
'groups/group3.jpg', | ||
'groups/group4.jpg', | ||
'groups/group5.jpg', | ||
'groups/group6.jpg', | ||
'groups/group7.jpg', | ||
'groups/group8.jpg', | ||
'groups/group9.jpg', | ||
'groups/group10.jpg', | ||
'groups/group11.jpg', | ||
'groups/group12.jpg', | ||
'groups/group13.jpg', | ||
'groups/group14.jpg', | ||
'ai-body.jpg', 'ai-upper.jpg', | ||
'person-carolina.jpg', 'person-celeste.jpg', 'person-leila1.jpg', 'person-leila2.jpg', 'person-lexi.jpg', 'person-linda.jpg', 'person-nicole.jpg', 'person-tasia.jpg', | ||
'person-tetiana.jpg', 'person-vlado1.jpg', 'person-vlado5.jpg', 'person-vlado.jpg', 'person-christina.jpg', 'person-lauren.jpg', | ||
'group-1.jpg', 'group-2.jpg', 'group-3.jpg', 'group-4.jpg', 'group-5.jpg', 'group-6.jpg', 'group-7.jpg', | ||
'daz3d-brianna.jpg', 'daz3d-chiyo.jpg', 'daz3d-cody.jpg', 'daz3d-drew-01.jpg', 'daz3d-drew-02.jpg', 'daz3d-ella-01.jpg', 'daz3d-ella-02.jpg', 'daz3d-gillian.jpg', | ||
'daz3d-hye-01.jpg', 'daz3d-hye-02.jpg', 'daz3d-kaia.jpg', 'daz3d-karen.jpg', 'daz3d-kiaria-01.jpg', 'daz3d-kiaria-02.jpg', 'daz3d-lilah-01.jpg', 'daz3d-lilah-02.jpg', | ||
'daz3d-lilah-03.jpg', 'daz3d-lila.jpg', 'daz3d-lindsey.jpg', 'daz3d-megah.jpg', 'daz3d-selina-01.jpg', 'daz3d-selina-02.jpg', 'daz3d-snow.jpg', | ||
'daz3d-sunshine.jpg', 'daz3d-taia.jpg', 'daz3d-tuesday-01.jpg', 'daz3d-tuesday-02.jpg', 'daz3d-tuesday-03.jpg', 'daz3d-zoe.jpg', 'daz3d-ginnifer.jpg', | ||
'daz3d-_emotions01.jpg', 'daz3d-_emotions02.jpg', 'daz3d-_emotions03.jpg', 'daz3d-_emotions04.jpg', 'daz3d-_emotions05.jpg', | ||
]; | ||
// add prefix for gitpages | ||
images = images.map((a) => `/human/samples/${a}`); | ||
log('Adding static image list:', images.length, 'images'); | ||
images = images.map((a) => `/human/samples/in/${a}`); | ||
log('Adding static image list:', images); | ||
} else { | ||
log('Disoovered images:', images); | ||
} | ||
|
||
// download and analyze all images | ||
for (let i = 0; i < images.length; i++) await process(i, images[i]); | ||
for (let i = 0; i < images.length; i++) await AddImageElement(i, images[i]); | ||
|
||
// print stats | ||
const num = all.reduce((prev, cur) => prev += cur.length, 0); | ||
log('Extracted faces:', num, 'from images:', all.length); | ||
log(human.tf.engine().memory()); | ||
|
||
// if we didn't download db, generate it from current faces | ||
if (!db || db.length === 0) await createDB(); | ||
else log('Loaded Faces DB:', db.length); | ||
if (!db || db.length === 0) await createFaceMatchDB(); | ||
|
||
log('Ready'); | ||
} | ||
|
Oops, something went wrong.