Skip to content

imj2185/STAR

Folders and files

NameName
Last commit message
Last commit date

Latest commit

author
imj2185
Apr 17, 2021
8b4a952 · Apr 17, 2021
Apr 13, 2021
Apr 16, 2021
Nov 9, 2020
Apr 16, 2021
Apr 16, 2021
Apr 2, 2021
Apr 17, 2021
Apr 17, 2021
Apr 11, 2021
Jan 30, 2021
Apr 17, 2021
Apr 17, 2021
Nov 6, 2020
Apr 4, 2021
Apr 12, 2021
Apr 15, 2021
Mar 7, 2021
Nov 7, 2020
Nov 7, 2020
Apr 16, 2021
Feb 13, 2021
Mar 2, 2021
Apr 12, 2021
Apr 12, 2021
Apr 13, 2021
Feb 13, 2021
Feb 8, 2021
Apr 11, 2021
Mar 4, 2021
Mar 4, 2021
Feb 28, 2021
Apr 11, 2021
Jan 12, 2021

Repository files navigation

APBGCN

Attention-Based Parts-oriented Graph Convolution Networks

Dataset

download ntu rgb+d 60 action recognition from skeleton from http://rose1.ntu.edu.sg/datasets/actionRecognition.asp

or use google drive

NTU60 NTU120

uzip data as the following file structure: APBGCN/raw/.*skeleton (create "raw" directory under APBGCN and put skeleton files)

run the code below to generate dataset:

python datagen.py

Training

git fetch and checkout to "distributed" branch

python train_dist.py -#distributed training

Configuration

parser.set_defaults(gpu=True,
                        batch_size=128,
                        dataset_name='NTU',
                        dataset_root=osp.join(os.getcwd()),
                        load_model=False,
                        in_channels=9,
                        num_enc_layers=5,
                        num_conv_layers=2,
                        weight_decay=4e-5,
                        drop_rate=[0.4, 0.4, 0.4, 0.4],  # linear_attention, sparse_attention, add_norm, ffn
                        hid_channels=64,
                        out_channels=64,
                        heads=8,
                        data_parallel=False,
                        cross_k=5,
                        mlp_head_hidden=128)

parser.set_defaults(gpu=True,
                        batch_size=128,
                        dataset_name='NTU',
                        dataset_root=osp.join(os.getcwd()),
                        load_model=False,
                        in_channels=9,
                        num_enc_layers=5,
                        num_conv_layers=2,
                        weight_decay=4e-5,
                        drop_rate=[0.4, 0.4, 0.4, 0.4],  # linear_attention, sparse_attention, add_norm, ffn
                        hid_channels=128,
                        out_channels=128,
                        heads=8,
                        data_parallel=False,
                        cross_k=5,
                        mlp_head_hidden=128)

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published