Skip to content

intellsensing/axopy

This branch is 168 commits ahead of, 3 commits behind axopy/axopy:master.

Folders and files

NameName
Last commit message
Last commit date

Latest commit

e8c324a · Jan 21, 2021
Jan 21, 2021
Sep 14, 2019
Jan 7, 2021
Jan 17, 2019
Apr 9, 2020
May 30, 2019
Sep 14, 2019
Jan 12, 2019
Jun 8, 2018
Sep 19, 2019
Jun 19, 2018
Jan 29, 2019
Feb 9, 2018
Jun 13, 2018
Sep 14, 2019

Repository files navigation

This is the Intelligent Sensing fork of axopy.

AxoPy Logo


JOSS Paper Travis CI Status Documentation Status Codecov test coverage PyPI package Anaconda package

Documentation: https://axopy.readthedocs.io

Axo-Pythonic synapses are those in which an axon synapses upon a Python program. AxoPy aims to facilitate such connections between electrophysiolgical signals and machines by making it easy for researchers to develop human-computer interface experiments. If you've ever found yourself spending more time thinking about how to implement your experiments than thinking about what the experiment should be, AxoPy may be able to help.

AxoPy consists of:

Graphical interface
Central to AxoPy is the graphical user interface providing visual feedback to the subject and controlling the flow of the experiment. The GUI is backed by PyQt5, and you're free to implement customized graphical elements if those built in to AxoPy don't suit your needs.
Data acquisition
AxoPy establishes a fairly simple API for communicating with input hardware, so all that's usually needed is a bit of middleware to get going. Check out pytrigno or pymcc to see what this is like. A couple input devices are built in (keyboard, noise generator), so examples run without needing special hardware.
Data storage
Data is stored in a file structure with common file formats (CSV and HDF5) so you can a) start working with data as soon as an experiment session is over and b) you don't need anything but standard tools (pandas, h5py) to do so. A high-level interface to the storage structure is also provided to make traversing a dataset simple.
Pipeline processing
Estimating intentions of the user from raw electrophysiological signals often involves a large number of processing operations. AxoPy facilitates flexible construction of pipelines that can be reused in different parts of an experiment and re-used for offline post-processing, etc.

Quickstart

Installation

pip

AxoPy is available on PyPI, so the following should get it installed if you're using a standard Python installation with pip:

$ pip install axopy

Note: if you have Python < 3.5, pip will not be able to install the pyqt5 package for you because wheels for pyqt5 are only provided for Python >= 3.5. If you are stuck on an older version of Python, consider using conda (described below, works for any Python version) or installing Qt5 and PyQt5 yourself before running the command above.

See the development documentation for information on setting up a development environment to work on AxoPy itself.

conda

AxoPy is also available on conda-forge, so if you're using (Ana)conda with any Python version, you can install it with:

$ conda install -c conda-forge axopy

Hello, AxoPy

Here's a minimal example to display some randomly generated signals in an "oscilloscope":

import axopy

daq = axopy.daq.NoiseGenerator(rate=1000, num_channels=4, read_size=100)
exp = axopy.experiment.Experiment(daq=daq)
exp.run(axopy.task.Oscilloscope())

Next Steps

Check out the documentation for more information on creating experiments. Some examples are also available.

Citing

If you use AxoPy in your research and want to acknowledge us, see our instructions for citing AxoPy.

Contributing

Please feel free to share any thoughts or opinions about the design and implementation of this software by opening an issue on GitHub. Constructive feedback is welcomed and appreciated.

GitHub issues also serve as the support channel, at least for now. Questions about how to do something are usually great opportunities to improve documentation, so you may be asked about your thoughts on where the answers should go.

If you want to contribute code, open a pull request. Bug fix pull requests are always welcome. For feature additions, breaking changes, etc. check if there is an open issue discussing the change and reference it in the pull request. If there isn't one, it is recommended to open one with your rationale for the change before spending significant time preparing the pull request.

Ideally, new/changed functionality should come with tests and documentation. If you are new to contributing, it is perfectly fine to open a work-in-progress pull request and have it iteratively reviewed. See the development documentation for instructions on setting up a development environment, running tests, and building the documentation.

About

Human-computer interface experimentation library

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 99.4%
  • TeX 0.6%