Skip to content

This repository contains the code for the paper `End-to-End Multimodal Emotion Recognition using Deep Neural Networks`.

License

Notifications You must be signed in to change notification settings

invincibleo/Multimodal-Emotion-Recognition

 
 

Repository files navigation

End-to-End Multimodal Emotion Recognition using Deep Neural Networks

This package provides training and evaluation code for the end-to-end multimodal emotion recognition paper. If you use this codebase in your experiments please cite:

Tzirakis, P., Trigeorgis, G., Nicolaou, M. A., Schuller, B., & Zafeiriou, S. (2017). End-to-End Multimodal Emotion Recognition using Deep Neural Networks. arXiv preprint arXiv:1704.08619. (https://arxiv.org/pdf/1704.08619.pdf)

Requirements

Below are listed the required modules to run the code.

  • Python <= 2.7
  • NumPy >= 1.11.1
  • TensorFlow <= 0.12
  • Menpo >= 0.6.2
  • MoviePy >= 0.2.2.11

Content

This repository contains the files:

  • model.py: contains the audio and video networks.
  • emotion_train.py: is in charge of training.
  • emotion_eval.py: is in charge of evaluating.
  • data_provider.py: provides the data.
  • data_generator.py: creates the tfrecords from '.wav' files
  • metrics.py: contains the concordance metric used for evaluation.
  • losses.py: contains the loss function of the training.
  • inception_processing.py: provides functions for visual regularization.

The multimodal model can be downloaded from here : https://www.doc.ic.ac.uk/~pt511/emotion_recognition_model.zip

About

This repository contains the code for the paper `End-to-End Multimodal Emotion Recognition using Deep Neural Networks`.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%