Skip to content

SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders.

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE.md
MIT
CODE_LICENSE.md
Notifications You must be signed in to change notification settings

ishine/SONAR

 
 

Repository files navigation

SONAR

[Paper] [Demo]

We introduce SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders. It substantially outperforms existing sentence embeddings such as LASER3 and LabSE on the xsim and xsim++ multilingual similarity search tasks.

Speech segments can be embedded in the same SONAR embedding space using language-specific speech encoders trained in a teacher-student setting on speech transcription data. We also provide a single text decoder, which allows us to perform text-to-text and speech-to-text machine translation, including for zero-shot language and modality combinations.

SONAR stands for Sentence-level multimOdal and laNguage-Agnostic Representations

The full list of supported languages (along with download links) can be found here below.

SONAR Architecture:


Text results


Speech results


Installing

You can install SONAR with pip install sonar-space. Note that there is another sonar package on pip that IS NOT this project, make sure to use sonar-space in your dependencies.

If you want to install SONAR manually, you can install it localy. SONAR depends mainly on Fairseq2 and can be installed using (tested with python=3.8)

pip install --upgrade pip
pip install -e .

If fairseq2 does not provide a build for your machine, check the readme of that project to build it locally.

Usage

fairseq2 will automatically download models into your $TORCH_HOME/hub directory upon using the commands below.

Compute text sentence embeddings with SONAR:

from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
t2vec_model = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder",
                                           tokenizer="text_sonar_basic_encoder")
sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
embeddings = t2vec_model.predict(sentences, source_lang="eng_Latn")
print(embeddings.shape)
# torch.Size([2, 1024])

Reconstruct text from SONAR embeddings

from sonar.inference_pipelines.text import EmbeddingToTextModelPipeline
vec2text_model = EmbeddingToTextModelPipeline(decoder="text_sonar_basic_decoder",
                                              tokenizer="text_sonar_basic_encoder")
reconstructed = vec2text_model.predict(embeddings, target_lang="eng_Latn", max_seq_len=512)
# max_seq_len is a keyword argument passed to the fairseq2 BeamSearchSeq2SeqGenerator.
print(reconstructed)
# ['My name is SONAR.', 'I can embed the sentences into vector space.']

Translate text with SONAR

from sonar.inference_pipelines.text import TextToTextModelPipeline
t2t_model = TextToTextModelPipeline(encoder="text_sonar_basic_encoder",
                                    decoder="text_sonar_basic_decoder",
                                    tokenizer="text_sonar_basic_encoder")  # tokenizer is attached to both encoder and decoder cards

sentences = ['My name is SONAR.', 'I can embed the sentences into vectorial space.']
t2t_model.predict(sentences, source_lang="eng_Latn", target_lang="fra_Latn")
# ['Mon nom est SONAR.', "Je peux intégrer les phrases dans l'espace vectoriel."]

Compute speech sentence embeddings with SONAR

from sonar.inference_pipelines.speech import SpeechToEmbeddingModelPipeline
s2vec_model = SpeechToEmbeddingModelPipeline(encoder="sonar_speech_encoder_eng")

s2vec_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
                     "./tests/integration_tests/data/audio_files/audio_2.wav"]).shape
# torch.Size([2, 1024])
import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"

s2vec_model.predict([inp]).shape
# torch.Size([1, 1024])

Speech-to-text translation with SONAR

from sonar.inference_pipelines.speech import SpeechToTextModelPipeline

s2t_model = SpeechToTextModelPipeline(encoder="sonar_speech_encoder_eng",
                                      decoder="text_sonar_basic_decoder",
                                      tokenizer="text_sonar_basic_decoder")

import torchaudio
inp, sr = torchaudio.load("./tests/integration_tests/data/audio_files/audio_1.wav")
assert sr == 16000, "Sample rate should be 16kHz"

# passing loaded audio files
s2t_model.predict([inp], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.']

# passing multiple wav files 
s2t_model.predict(["./tests/integration_tests/data/audio_files/audio_1.wav",
                   "./tests/integration_tests/data/audio_files/audio_2.wav"], target_lang="eng_Latn")
# ['Television reports show white smoke coming from the plant.',
# 'These couples may choose to make an adoption plan for their baby.']

Predicting sentence similarity with BLASER 2.0 models

BLASER 2.0 is a family of models for automatic evaluation of machine translation quality based on SONAR embeddings. They predict cross-lingual semantic similarity between the translation and the source (optionally, also using a reference translation).

from sonar.inference_pipelines.text import TextToEmbeddingModelPipeline
from sonar.models.blaser.loader import load_blaser_model

blaser_ref = load_blaser_model("blaser_2_0_ref").eval()
blaser_qe = load_blaser_model("blaser_2_0_qe").eval()
text_embedder = TextToEmbeddingModelPipeline(encoder="text_sonar_basic_encoder", tokenizer="text_sonar_basic_encoder")

src_embs = text_embedder.predict(["Le chat s'assit sur le tapis."], source_lang="fra_Latn")
ref_embs = text_embedder.predict(["The cat sat on the mat."], source_lang="eng_Latn")
mt_embs = text_embedder.predict(["The cat sat down on the carpet."], source_lang="eng_Latn")

print(blaser_ref(src=src_embs, ref=ref_embs, mt=mt_embs).item())  # 4.688
print(blaser_qe(src=src_embs, mt=mt_embs).item())  # 4.708

Detailed model cards with more examples: facebook/blaser-2.0-ref, facebook/blaser-2.0-qe.

Demo notebooks

See more complete demo notebooks :

Supported languages and download links

The SONAR text encoder & decoder supports 200 languages. SONAR speech encoders support 37 languages.

Available text encoders/decoders
model link
encoder download
decoder download
finetuned decoder download
tokenizer download

All 200 languages from the No Language Left Behind project are supported.

Available speech encoders
lang_code language link
arb ms arabic download
asm assamese download
bel belarussian download
ben bengali download
bos bosnian download
bul bulgarian download
cat catalan download
ces czech download
cmn mandarin chinese download
cym welsh download
dan danish download
deu german download
est estonian download
fin finnish download
fra french download
guj gujurati download
heb hebrew download
hin hindi download
hrv croatian download
ind indonesian download
ita italian download
jpn japanse download
kan kannada download
kor korean download
lao lao download
lit lithaian download
lvs standard latvian download
mal malayalam download
mar marathi download
mkd macedonian download
mlt maltese download
npi nepali download
nld dutch download
ory odia download
pan punjabi download
pes western persian download
pol polish download
por portuguese download
ron romanian download
rus russian download
slk slovak download
slv slovenian download
snd sindhi download
srp serbian download
spa spanish download
swe swedish download
swh swahili download
tam tamil download
tel telugu download
tgl tagalog download
tha thai download
tur turkish download
ukr ukrainian download
urd urdu download
uzn northern uzbek download
vie vietnamese download
yue yue download

Citation Information

Please cite the paper when referencing the SONAR embedding space, encoders and decoders as:

@misc{Duquenne:2023:sonar_arxiv,
  author = {Paul-Ambroise Duquenne and Holger Schwenk and Benoit Sagot},
  title = {{SONAR:} Sentence-Level Multimodal and Language-Agnostic Representations},
  publisher = {arXiv},
  year = {2023},
  url = {https://arxiv.org/abs/2308.11466},
}

Contributing

See the CONTRIBUTING file for how to help out.

License

SONAR code is released under the MIT license (see CODE_LICENSE).

Some of SONAR models are released with the same MIT license, BUT BEWARE, some of them are released under a non commercial license (see NC_MODEL_LICENSE). Please refer to LICENSE for the details.

About

SONAR, a new multilingual and multimodal fixed-size sentence embedding space, with a full suite of speech and text encoders and decoders.

Resources

License

Unknown, MIT licenses found

Licenses found

Unknown
LICENSE.md
MIT
CODE_LICENSE.md

Code of conduct

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%