v2.0.0 - Beta 5 (In Development)
Source code: https://git.sr.ht/~hecanjog/pippi
Documentation: https://pippi.world
Pippi is a library of computer music modules for python.
It's what I use to make my music, and I hope it'll be useful to others in some way, too. It's a work in progress.
It includes a few handy data structures for music like
SoundBuffer
& Wavetable
, which are operator-overloaded
to make working with sounds and control structures simpler.
It also includes a lot of useful methods for doing common and not-so-common transformations to sounds and control structures.
from pippi import dsp
sound1 = dsp.read('sound1.wav')
sound2 = dsp.read('sound2.flac')
# Mix two sounds
both = sound1 & sound2
# Apply a skewed hann Wavetable as an envelope to a sound
enveloped = sound * dsp.win('hann').skewed(0.6)
# Or just a sine envelope via a shortcut method on the `SoundBuffer`
enveloped = sound.env('sine')
# Synthesize a 10 second graincloud from the sound,
# with grain length modulating between 20ms and 2s
# over a triangle shaped curve.
cloudy = enveloped.cloud(10, grainlength=dsp.win('tri', dsp.MS*20, 2))
It comes with several oscs:
Alias
- a highly aliased pulse train oscBar
- a bar physical model (from Soundpipe)Drunk
- does a drunk walk on the y axis over a fixed set of random points w/hermite interpolation for smooth waveshapes (kind of like dynamic stochastic synthesis in one dimension)DSS
- a basic implementation of dynamic stochastic synthesis that does a drunk walk in two dimensions over a random set of breakpointsFM
- a basic two operator FM synth w/harmonicity ratio & modulation index controlsFold
- an infinite folding wavetable oscOsc
- an everyday wavetable oscOsc2d
- a 2d morphing wavetable oscPluck
- a plucked string physical model (adapted from JOS)Pulsar
- a pulsar synthesis enginePulsar2d
- a 2d morphing pulsar synthesis engine (pairs well with a stack of wavetables extracted with theWaveset
module)SineOsc
- a simple sinewave osc (doesn't use wavetables)Tukey
- a tukey-window-based osc with waveshape modulation between square-like and sine-like
And many built-in effects and transformations:
- Easy independent control over pitch and speed for any
SoundBuffer
- Paulstretch
- Several forms of waveshaping and distortion including a crossover distortion ported from supercollider
- Sweapable highpass, lowpass, bandpass and band reject butterworth filters from Soundpipe
- Lots more!
As well as support for pitch and harmony transformations and non-standard tuning systems
from pippi import tune
# Get a list of frequencies from a list of scale degrees
frequencies = tune.degrees([1,3,5,9], octave=3, root='a', scale=tune.MINOR, ratios=tune.JUST)
# Get a list of frequencies from a chord symbol using a tuning system devised by Terry Riley
frequencies = tune.chord('ii69', key='g#', octave=5, ratios=tune.TERRY)
# Convert MIDI note to frequency
freq = tune.mtof(60)
# Convert frequency to MIDI note
note = tune.ftom(440.0)
# Convert a pitch to a frequency
freq = tune.ntf('C#3')
And basic graphing functionality for any SoundBuffer
or Wavetable
-- some dumb examples pictured in the banner above.
from pippi import dsp
sound = dsp.read('sound.wav')
# Render an image of this sound's waveform
sound.graph('mysound.png')
# Render an image of a sinc wavetable with a label and scaled range
dsp.win('sinc').graph('sinc.png', label='A sinc wavetable', y=(-.25, 1))
As well as other neat stuff like soundfont rendering support via tinysf!
from pippi import dsp, soundfont
# Play a piano sound from a soundfont with general MIDI support (program change is zero-indexed)
tada = soundfont.play('my-cool-soundfont.sf2', length=30, freq=345.9, amp=0.5, voice=0)
# Save copy to your hard disk
tada.write('tada.wav')
There are annotated example scripts in the tutorials directory which introduce some of pippi's functionality.
Beyond arriving at a good-enough stable API for the 2.x series of releases (and fixing bugs), my goal during the beta phase of development is to deal with the lack of documentation for this project.
Pippi requires python 3.6+ which can be found here:
https://www.python.org/downloads/
To install pippi:
- Clone this repository locally:
git clone https://github.com/luvsound/pippi.git
- (Optional but recommended) Create a virtualenv somewhere where you want to work:
cd /my/pippi/projects; python3 -m venv venv; source venv/bin/activate
- (With your virtualenv active) Go back to the pippi source directory
cd /path/to/pippi
and runmake install
Raspberry Pi OS:
Use the same steps as above, but create your virtualenv with
python3 -m venv --system-site-packages venv
and runmake rpi-install
.
The final command does a few things:
- Installs python deps, so make sure you're inside a virtual environment if you want to be!
- Sets up git submodules for external libs
- Builds and installs Soundpipe
- Builds and installs pippi & cython extensions
Please let me know if you run into problems!
At the moment the best place to get pippi is using the method described above. Because of some packaging issues that need to be worked out, the version on pypi is quite a bit older and does not include most of the fun stuff.
make test
In many cases, this will produce a soundfile in the tests/renders
directory for the corresponding test. (Ear-driven regression testing...)
During the beta I like to keep failing tests in the main repo, so... most tests will be passing but if they all are passing, probably you are living in the future and are looking at the first stable release.
There are also shortcuts to run only certain groups of tests, like test-wavesets
-- check out the Makefile
for a list of them all.
NOTE: the default branch is now called
main
. Runbash scripts/rename_default_branch.sh
to update your local clone if needed.
While hacking on pippi itself, running make build
will recompile the cython extensions.
If you need to build sources from a clean slate (sometimes updates to pxd
files require this) then run make clean build
instead.
Astrid Lindgren who wrote inspiring stories about Pippi Longstocking, this library's namesake.
Will Mitchell who contributed a wonderful zener diode softclip simulation, a state variable filter implementation available in the fx
module, amazing work on bandlimiting in oscs and general moral support.
Paul Batchelor who created Soundpipe and sndkit, which pippi borrows greedily from for lots of super useful and fun DSP stuff.
Project Nayuki who created a compact and understandable FFT used in SoundBuffer.convolve()
among other places.
Bernhard Schelling for the TinySoundFont library used in the soundfont
module.
James McCartney who wrote the implementation of hermite interpolation used in the Wavetable
module and elsewhere -- also, you know, supercollider of course! which lots of bits of pippi are inspired by or directly ported from -- see the libpippi sources for more info!
Jatin Chowdhury who made the lovely saturating feedback wavefolder algorithm used in fx.fold
.
Nando Florestan who made the small public domain GM soundfont used in the test suite.
@[email protected] who introduced me to the modulation param on tukey windows...!