Skip to content

Automated machine learning for analyzing, interpreting, and designing biological sequences

License

Notifications You must be signed in to change notification settings

jackievaleri/BioAutoMATED

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

Logo_V3-01

BioAutoMATED

an end-to-end automated machine learning tool for explanation and design of biological sequences (Valeri et al. 2023)

Abstract

The design choices underlying machine learning (ML) models present important barriers to entry for many biologists who aim to incorporate ML in their research. Automated machine learning (AutoML) algorithms can address many design challenges that come with applying ML to the life sciences. However, these algorithms are rarely used in systems biology studies because they typically do not explicitly handle biological sequences (e.g., nucleotide, amino acid, or glycan sequences) and cannot be easily compared with other AutoML algorithms. Here, we present BioAutoMATED, an AutoML platform for biological sequence analysis that integrates multiple AutoML methods into a unified framework. Users are automatically provided with relevant techniques for analyzing, interpreting, and designing biological sequences. BioAutoMATED predicts gene regulation, peptide-drug interactions, and glycan annotation with performance comparable to that of manually tuned models, revealing salient sequence characteristics. By automating sequence modeling, BioAutoMATED allows life scientists to more readily incorporate ML into their work.

Installation Instructions

Please find all installation instructions, for both GitHub and DockerHub installations, in the provided Installation Guide file.

Feel free to reach out to jackievaleri8 "at" gmail "dot" com with questions.

About

Automated machine learning for analyzing, interpreting, and designing biological sequences

Resources

License

Stars

Watchers

Forks

Packages

No packages published

Languages