Skip to content

Commit

Permalink
Fix padding for average pooling from TensorFlow
Browse files Browse the repository at this point in the history
  • Loading branch information
dkurt committed Jan 31, 2018
1 parent df22baf commit a2e9bfb
Show file tree
Hide file tree
Showing 2 changed files with 40 additions and 8 deletions.
17 changes: 9 additions & 8 deletions modules/dnn/src/layers/pooling_layer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -228,6 +228,7 @@ class PoolingLayerImpl : public PoolingLayer
const Mat* src, *rois;
Mat *dst, *mask;
Size kernel, stride, pad;
String padMode;
int nstripes;
bool computeMaxIdx;
std::vector<int> ofsbuf;
Expand All @@ -238,7 +239,7 @@ class PoolingLayerImpl : public PoolingLayer
computeMaxIdx(0), poolingType(MAX), spatialScale(0) {}

static void run(const Mat& src, const Mat& rois, Mat& dst, Mat& mask, Size kernel,
Size stride, Size pad, int poolingType, float spatialScale,
Size stride, Size pad, String padMode, int poolingType, float spatialScale,
bool computeMaxIdx, int nstripes)
{
CV_Assert(src.isContinuous(), dst.isContinuous(),
Expand All @@ -257,6 +258,7 @@ class PoolingLayerImpl : public PoolingLayer
p.kernel = kernel;
p.stride = stride;
p.pad = pad;
p.padMode = padMode;
p.nstripes = nstripes;
p.computeMaxIdx = computeMaxIdx;
p.poolingType = poolingType;
Expand Down Expand Up @@ -336,7 +338,6 @@ class PoolingLayerImpl : public PoolingLayer
yend = min(ystart + kernel_h, inp_height + pad_h);
srcData = src->ptr<float>(n, c);
}
int ydelta = yend - ystart;
ystart = max(ystart, 0);
yend = min(yend, inp_height);
float *dstData = dst->ptr<float>(n, c, y0);
Expand Down Expand Up @@ -500,15 +501,15 @@ class PoolingLayerImpl : public PoolingLayer
}
else if (poolingType == AVE)
{
bool isSamePad = padMode == "SAME";
for( ; x0 < x1; x0++ )
{
int xstart = x0 * stride_w - pad_w;
int xend = min(xstart + kernel_w, inp_width + pad_w);
int xdelta = xend - xstart;
xstart = max(xstart, 0);
xend = min(xend, inp_width);
float inv_kernel_area = 1.f/(ydelta*xdelta);

float inv_kernel_area = isSamePad ? (yend - ystart) * (xend - xstart) : kernel.area();
inv_kernel_area = 1.0 / inv_kernel_area;
#if CV_SIMD128
if( xstart > 0 && x0 + 7 < x1 && (x0 + 7) * stride_w - pad_w + kernel_w < inp_width )
{
Expand Down Expand Up @@ -619,21 +620,21 @@ class PoolingLayerImpl : public PoolingLayer
{
const int nstripes = getNumThreads();
Mat rois;
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad, type, spatialScale, computeMaxIdx, nstripes);
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad, padMode, type, spatialScale, computeMaxIdx, nstripes);
}

void avePooling(Mat &src, Mat &dst)
{
const int nstripes = getNumThreads();
Mat rois, mask;
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad, type, spatialScale, computeMaxIdx, nstripes);
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad, padMode, type, spatialScale, computeMaxIdx, nstripes);
}

void roiPooling(const Mat &src, const Mat &rois, Mat &dst)
{
const int nstripes = getNumThreads();
Mat mask;
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad, type, spatialScale, computeMaxIdx, nstripes);
PoolingInvoker::run(src, rois, dst, mask, kernel, stride, pad, padMode, type, spatialScale, computeMaxIdx, nstripes);
}

virtual Ptr<BackendNode> initMaxPoolingHalide(const std::vector<Ptr<BackendWrapper> > &inputs)
Expand Down
31 changes: 31 additions & 0 deletions modules/dnn/test/test_tf_importer.cpp
Original file line number Diff line number Diff line change
Expand Up @@ -164,6 +164,7 @@ TEST(Test_TensorFlow, pooling)
runTensorFlowNet("max_pool_even");
runTensorFlowNet("max_pool_odd_valid");
runTensorFlowNet("max_pool_odd_same");
runTensorFlowNet("ave_pool_same");
}

TEST(Test_TensorFlow, deconvolution)
Expand Down Expand Up @@ -248,6 +249,36 @@ TEST(Test_TensorFlow, MobileNet_SSD)
normAssert(target[2].reshape(1, 1), output[2].reshape(1, 1), "", 4e-5, 1e-2);
}

TEST(Test_TensorFlow, Inception_v2_SSD)
{
std::string proto = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pbtxt", false);
std::string model = findDataFile("dnn/ssd_inception_v2_coco_2017_11_17.pb", false);

Net net = readNetFromTensorflow(model, proto);
Mat img = imread(findDataFile("dnn/street.png", false));
Mat blob = blobFromImage(img, 1.0f / 127.5, Size(300, 300), Scalar(127.5, 127.5, 127.5), true, false);

net.setInput(blob);
// Output has shape 1x1xNx7 where N - number of detections.
// An every detection is a vector of values [id, classId, confidence, left, top, right, bottom]
Mat out = net.forward();
out = out.reshape(1, out.total() / 7);

Mat detections;
for (int i = 0; i < out.rows; ++i)
{
if (out.at<float>(i, 2) > 0.5)
detections.push_back(out.row(i).colRange(1, 7));
}

Mat ref = (Mat_<float>(5, 6) << 1, 0.90176028, 0.19872092, 0.36311883, 0.26461923, 0.63498729,
3, 0.93569964, 0.64865261, 0.45906419, 0.80675775, 0.65708131,
3, 0.75838411, 0.44668293, 0.45907149, 0.49459291, 0.52197015,
10, 0.95932811, 0.38349164, 0.32528657, 0.40387636, 0.39165527,
10, 0.93973452, 0.66561931, 0.37841269, 0.68074018, 0.42907384);
normAssert(detections, ref);
}

OCL_TEST(Test_TensorFlow, MobileNet_SSD)
{
throw SkipTestException("TODO: test is failed");
Expand Down

0 comments on commit a2e9bfb

Please sign in to comment.