-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
95 changed files
with
856 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,53 @@ | ||
#! /usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# vim:fenc=utf-8 | ||
|
||
import torch_geometric.transforms as T | ||
import warnings | ||
warnings.filterwarnings('ignore') | ||
import torch | ||
from torch_geometric.datasets import Planetoid | ||
from torch_geometric.datasets import Amazon | ||
from torch_geometric.datasets import WikipediaNetwork | ||
from torch_geometric.datasets import Actor | ||
from torch_geometric.datasets import WebKB | ||
from torch_geometric.datasets import LINKXDataset | ||
from torch_geometric.datasets import AmazonProducts | ||
|
||
def DataLoader(name): | ||
|
||
name = name.lower() | ||
root_path = '/home/jayee/datasets/' | ||
if name in ['cora', 'citeseer', 'pubmed']: | ||
dataset = Planetoid(root_path, name, split='random', num_train_per_class=20, num_val=500, num_test=1000, transform=T.NormalizeFeatures()) | ||
|
||
elif name in ['computers', 'photo']: | ||
dataset = Amazon(root_path, name, T.NormalizeFeatures()) | ||
|
||
elif name in ['chameleon', 'squirrel']: | ||
# use everything from "geom_gcn_preprocess=False" and | ||
# only the node label y from "geom_gcn_preprocess=True" | ||
preProcDs = WikipediaNetwork( | ||
root=root_path, name=name, geom_gcn_preprocess=True, transform=T.NormalizeFeatures()) | ||
dataset = WikipediaNetwork( | ||
root=root_path, name=name, geom_gcn_preprocess=True, transform=T.NormalizeFeatures()) | ||
data = dataset[0] | ||
data.edge_index = preProcDs[0].edge_index | ||
return dataset, data | ||
|
||
elif name in ['film']: | ||
dataset = Actor(root=root_path+'Actor', transform=T.NormalizeFeatures()) | ||
|
||
elif name in ['texas', 'cornell', 'wisconsin']: | ||
dataset = WebKB(root=root_path, name=name, transform=T.NormalizeFeatures()) | ||
|
||
elif name in ["penn94", "reed98", "amherst41", "cornell5", "johnshopkins55", "genius"]: | ||
dataset = LINKXDataset(root=root_path, name=name, transform=T.NormalizeFeatures()) | ||
|
||
elif name in ["amazonproducts"]: | ||
dataset = AmazonProducts(root=root_path+'amazonproducts', transform=T.NormalizeFeatures()) | ||
|
||
else: | ||
raise ValueError(f'dataset {name} not supported in dataloader') | ||
|
||
return dataset, dataset[0] |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,114 @@ | ||
#! /usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# vim:fenc=utf-8 | ||
|
||
import argparse | ||
from dataset_utils import DataLoader | ||
from utils import * | ||
from models import * | ||
import torch | ||
import torch.nn.functional as F | ||
from tqdm import trange | ||
import numpy as np | ||
from other_models import * | ||
from sklearn.metrics import roc_auc_score | ||
|
||
def train(model, optimizer, data, args): | ||
model.train() | ||
optimizer.zero_grad() | ||
out, h = model(data) | ||
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask]) | ||
loss.backward() | ||
optimizer.step() | ||
del out | ||
|
||
def test(model, data, args): | ||
model.eval() | ||
accs, losses, preds = [], [], [] | ||
out, h = model(data) | ||
for _, mask in data('train_mask', 'val_mask', 'test_mask'): | ||
pred = out[mask].argmax(dim=1) | ||
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item() | ||
loss = F.nll_loss(out[mask], data.y[mask]) | ||
# preds.append(pred.detach().cpu()) | ||
accs.append(acc) | ||
# losses.append(loss.detach().cpu()) | ||
return accs, h | ||
|
||
def show_results(args, Results): | ||
test_acc_mean, val_acc_mean = np.mean(Results, axis=0) * 100 | ||
test_acc_std = np.sqrt(np.var(Results, axis=0)[0]) * 100 | ||
confidence_interval = 1.96 * test_acc_std/np.sqrt(10) | ||
print(f'On dataset {args.dataset}, in 10 repeated experiment:') | ||
print(f'Test acc mean= {test_acc_mean:.2f} ± {confidence_interval:.2f} \t val acc mean = {val_acc_mean:.2f}') | ||
|
||
# file = open(f'./save/onlyOutput_log.txt', 'a') | ||
# print(f'dataset : {args.dataset}, num_layers : {args.num_layers}:', file=file) | ||
# # print(f'num_layers:{args.num_layers}, dropout:{args.dropout}, lr:{args.lr}, weight_decay:{args.weight_decay}, hidden:{args.hidden}', file=file) | ||
# print(f'Test acc mean= {test_acc_mean:.2f} \t val acc mean = {val_acc_mean:.2f}', file=file) | ||
# print('*'*30, file=file) | ||
|
||
def RunExp(args, dataset, data, Net, split): | ||
N = data.x.size(0) | ||
model = Net(dataset, args, N) | ||
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu') | ||
|
||
if args.dataset in ["computers", "photo", "penn94", "reed98", "amherst41", "cornell5", "johnshopkins55", "genius"]: | ||
percls_trn = int(round(args.train_rate*len(data.y)/dataset.num_classes)) | ||
val_lb = int(round(args.val_rate*len(data.y))) | ||
data = random_splits(data, dataset.num_classes, percls_trn, val_lb) | ||
else: | ||
data = geom_mask(args.dataset, data, split) | ||
|
||
model, data = model.to(device), data.to(device) | ||
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay) | ||
|
||
best_val_acc, best_test_acc = 0, 0 | ||
best_val_loss = float('inf') | ||
val_loss_history = [] | ||
val_acc_history = [] | ||
|
||
for epoch in trange(args.epochs): | ||
train(model, optimizer, data, args) | ||
[train_acc, val_acc, tmp_test_acc], h = test(model, data, args) | ||
|
||
if val_acc > best_val_acc: | ||
best_val_acc = val_acc | ||
best_test_acc = tmp_test_acc | ||
best_epoch = iter | ||
# if(epoch==0): | ||
# torch.save(h, f'save/{args.dataset}_adj.pt') | ||
# torch.save(h, f'save/{args.dataset}_x.pt') | ||
# torch.save(h, f'save/{args.dataset}_h.pt') | ||
# torch.save(h, f'save/{args.dataset}_GCN_h.pt') | ||
|
||
return best_test_acc, best_val_acc | ||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser() | ||
parser.add_argument('--seed', type=int, default=6666) | ||
parser.add_argument('--epochs', type=int, default=300) | ||
parser.add_argument('--lr', type=float, default=0.01) | ||
parser.add_argument('--weight_decay', type=float, default=0.0005) | ||
parser.add_argument('--early_stopping', type=int, default=500) | ||
parser.add_argument('--hidden', type=int, default=64) | ||
parser.add_argument('--dropout', type=float, default=0.5) | ||
parser.add_argument('--train_rate', type=float, default=0.5) | ||
parser.add_argument('--val_rate', type=float, default=0.25) | ||
parser.add_argument('--splits', type=int, default=1) | ||
parser.add_argument('--num_layers', type=int, default=2) | ||
parser.add_argument('--dataset', default='penn94') | ||
args = parser.parse_args() | ||
|
||
set_seed(args.seed) | ||
Net = GRN | ||
|
||
dataset, data = DataLoader(args.dataset) | ||
|
||
Results = [] | ||
for i in trange(args.splits): | ||
test_acc, best_val_acc = RunExp(args, dataset, data, Net, i) | ||
Results.append([test_acc, best_val_acc]) | ||
show_results(args, Results) | ||
|
||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,85 @@ | ||
#! /usr/bin/env python | ||
# -*- coding: utf-8 -*- | ||
# vim:fenc=utf-8 | ||
|
||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import math | ||
from torch.nn import Linear | ||
from torch_geometric.utils import degree, index_sort, to_dense_adj | ||
from torch_sparse import SparseTensor | ||
from utils import * | ||
|
||
|
||
class GRN(torch.nn.Module): | ||
def __init__(self, dataset, args, N): | ||
super(GRN, self).__init__() | ||
self.dropout = args.dropout | ||
self.N = N | ||
self.w11=Linear(N, args.hidden) | ||
self.w22=Linear(dataset.num_features, args.hidden) | ||
|
||
self.w3=Linear(args.hidden, args.hidden) | ||
self.w4=Linear(args.hidden, args.hidden) | ||
|
||
self.out=Linear(args.hidden, dataset.num_classes) | ||
|
||
|
||
@classmethod | ||
def _norm(cls, edge_index): | ||
adj = to_dense_adj(edge_index).squeeze() | ||
deg = adj.sum(dim=1).to(torch.float) | ||
deg_inv_sqrt = deg.pow(-0.5) | ||
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0 | ||
adj = deg_inv_sqrt.view(-1, 1) * adj * deg_inv_sqrt.view(1, -1) | ||
return adj | ||
|
||
def forward(self, data): | ||
x, edge_index = data.x, data.edge_index | ||
|
||
adj_ = SparseTensor(row=edge_index[0], col=edge_index[1], | ||
sparse_sizes=(x.size(0), x.size(0)) | ||
).to_torch_sparse_coo_tensor() | ||
|
||
adj=self.w11(adj_) | ||
x=self.w22(x) | ||
h1=torch.mul(adj, x) | ||
h1=F.sigmoid(h1) | ||
h=self.out(h1) | ||
return F.log_softmax(h, dim=1), h | ||
|
||
class Model1(torch.nn.Module): | ||
def __init__(self, dataset, args, N): | ||
super(Model1, self).__init__() | ||
self.dropout = args.dropout | ||
self.N = N | ||
self.w11=Linear(N, args.hidden) | ||
self.w22=Linear(dataset.num_features, args.hidden) | ||
self.out=Linear(args.hidden, dataset.num_classes) | ||
|
||
def forward(self, data): | ||
x, edge_index = data.x, data.edge_index | ||
x=self.w22(x) | ||
h=x | ||
h=self.out(h) | ||
return F.log_softmax(h, dim=1), h | ||
|
||
class Model2(torch.nn.Module): | ||
def __init__(self, dataset, args, N): | ||
super(Model2, self).__init__() | ||
self.dropout = args.dropout | ||
self.N = N | ||
self.w11=Linear(N, args.hidden) | ||
self.w22=Linear(dataset.num_features, args.hidden) | ||
self.out=Linear(args.hidden, dataset.num_classes) | ||
|
||
def forward(self, data): | ||
x, edge_index = data.x, data.edge_index | ||
adj_ = SparseTensor(row=edge_index[0], col=edge_index[1], | ||
sparse_sizes=(x.size(0), x.size(0)) | ||
).to_torch_sparse_coo_tensor() | ||
|
||
adj=self.w11(adj_) | ||
h=self.out(adj) | ||
return F.log_softmax(h, dim=1), h |
Oops, something went wrong.