Skip to content

Commit

Permalink
Add files via upload
Browse files Browse the repository at this point in the history
  • Loading branch information
jayeew authored Oct 17, 2023
1 parent 383c362 commit 70f8ca7
Show file tree
Hide file tree
Showing 95 changed files with 856 additions and 0 deletions.
53 changes: 53 additions & 0 deletions dataset_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,53 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8

import torch_geometric.transforms as T
import warnings
warnings.filterwarnings('ignore')
import torch
from torch_geometric.datasets import Planetoid
from torch_geometric.datasets import Amazon
from torch_geometric.datasets import WikipediaNetwork
from torch_geometric.datasets import Actor
from torch_geometric.datasets import WebKB
from torch_geometric.datasets import LINKXDataset
from torch_geometric.datasets import AmazonProducts

def DataLoader(name):

name = name.lower()
root_path = '/home/jayee/datasets/'
if name in ['cora', 'citeseer', 'pubmed']:
dataset = Planetoid(root_path, name, split='random', num_train_per_class=20, num_val=500, num_test=1000, transform=T.NormalizeFeatures())

elif name in ['computers', 'photo']:
dataset = Amazon(root_path, name, T.NormalizeFeatures())

elif name in ['chameleon', 'squirrel']:
# use everything from "geom_gcn_preprocess=False" and
# only the node label y from "geom_gcn_preprocess=True"
preProcDs = WikipediaNetwork(
root=root_path, name=name, geom_gcn_preprocess=True, transform=T.NormalizeFeatures())
dataset = WikipediaNetwork(
root=root_path, name=name, geom_gcn_preprocess=True, transform=T.NormalizeFeatures())
data = dataset[0]
data.edge_index = preProcDs[0].edge_index
return dataset, data

elif name in ['film']:
dataset = Actor(root=root_path+'Actor', transform=T.NormalizeFeatures())

elif name in ['texas', 'cornell', 'wisconsin']:
dataset = WebKB(root=root_path, name=name, transform=T.NormalizeFeatures())

elif name in ["penn94", "reed98", "amherst41", "cornell5", "johnshopkins55", "genius"]:
dataset = LINKXDataset(root=root_path, name=name, transform=T.NormalizeFeatures())

elif name in ["amazonproducts"]:
dataset = AmazonProducts(root=root_path+'amazonproducts', transform=T.NormalizeFeatures())

else:
raise ValueError(f'dataset {name} not supported in dataloader')

return dataset, dataset[0]
114 changes: 114 additions & 0 deletions main.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,114 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8

import argparse
from dataset_utils import DataLoader
from utils import *
from models import *
import torch
import torch.nn.functional as F
from tqdm import trange
import numpy as np
from other_models import *
from sklearn.metrics import roc_auc_score

def train(model, optimizer, data, args):
model.train()
optimizer.zero_grad()
out, h = model(data)
loss = F.nll_loss(out[data.train_mask], data.y[data.train_mask])
loss.backward()
optimizer.step()
del out

def test(model, data, args):
model.eval()
accs, losses, preds = [], [], []
out, h = model(data)
for _, mask in data('train_mask', 'val_mask', 'test_mask'):
pred = out[mask].argmax(dim=1)
acc = pred.eq(data.y[mask]).sum().item() / mask.sum().item()
loss = F.nll_loss(out[mask], data.y[mask])
# preds.append(pred.detach().cpu())
accs.append(acc)
# losses.append(loss.detach().cpu())
return accs, h

def show_results(args, Results):
test_acc_mean, val_acc_mean = np.mean(Results, axis=0) * 100
test_acc_std = np.sqrt(np.var(Results, axis=0)[0]) * 100
confidence_interval = 1.96 * test_acc_std/np.sqrt(10)
print(f'On dataset {args.dataset}, in 10 repeated experiment:')
print(f'Test acc mean= {test_acc_mean:.2f} ± {confidence_interval:.2f} \t val acc mean = {val_acc_mean:.2f}')

# file = open(f'./save/onlyOutput_log.txt', 'a')
# print(f'dataset : {args.dataset}, num_layers : {args.num_layers}:', file=file)
# # print(f'num_layers:{args.num_layers}, dropout:{args.dropout}, lr:{args.lr}, weight_decay:{args.weight_decay}, hidden:{args.hidden}', file=file)
# print(f'Test acc mean= {test_acc_mean:.2f} \t val acc mean = {val_acc_mean:.2f}', file=file)
# print('*'*30, file=file)

def RunExp(args, dataset, data, Net, split):
N = data.x.size(0)
model = Net(dataset, args, N)
device = torch.device('cuda:0' if torch.cuda.is_available() else 'cpu')

if args.dataset in ["computers", "photo", "penn94", "reed98", "amherst41", "cornell5", "johnshopkins55", "genius"]:
percls_trn = int(round(args.train_rate*len(data.y)/dataset.num_classes))
val_lb = int(round(args.val_rate*len(data.y)))
data = random_splits(data, dataset.num_classes, percls_trn, val_lb)
else:
data = geom_mask(args.dataset, data, split)

model, data = model.to(device), data.to(device)
optimizer = torch.optim.Adam(model.parameters(), lr=args.lr, weight_decay=args.weight_decay)

best_val_acc, best_test_acc = 0, 0
best_val_loss = float('inf')
val_loss_history = []
val_acc_history = []

for epoch in trange(args.epochs):
train(model, optimizer, data, args)
[train_acc, val_acc, tmp_test_acc], h = test(model, data, args)

if val_acc > best_val_acc:
best_val_acc = val_acc
best_test_acc = tmp_test_acc
best_epoch = iter
# if(epoch==0):
# torch.save(h, f'save/{args.dataset}_adj.pt')
# torch.save(h, f'save/{args.dataset}_x.pt')
# torch.save(h, f'save/{args.dataset}_h.pt')
# torch.save(h, f'save/{args.dataset}_GCN_h.pt')

return best_test_acc, best_val_acc

if __name__ == '__main__':
parser = argparse.ArgumentParser()
parser.add_argument('--seed', type=int, default=6666)
parser.add_argument('--epochs', type=int, default=300)
parser.add_argument('--lr', type=float, default=0.01)
parser.add_argument('--weight_decay', type=float, default=0.0005)
parser.add_argument('--early_stopping', type=int, default=500)
parser.add_argument('--hidden', type=int, default=64)
parser.add_argument('--dropout', type=float, default=0.5)
parser.add_argument('--train_rate', type=float, default=0.5)
parser.add_argument('--val_rate', type=float, default=0.25)
parser.add_argument('--splits', type=int, default=1)
parser.add_argument('--num_layers', type=int, default=2)
parser.add_argument('--dataset', default='penn94')
args = parser.parse_args()

set_seed(args.seed)
Net = GRN

dataset, data = DataLoader(args.dataset)

Results = []
for i in trange(args.splits):
test_acc, best_val_acc = RunExp(args, dataset, data, Net, i)
Results.append([test_acc, best_val_acc])
show_results(args, Results)


85 changes: 85 additions & 0 deletions models.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,85 @@
#! /usr/bin/env python
# -*- coding: utf-8 -*-
# vim:fenc=utf-8

import torch
import torch.nn as nn
import torch.nn.functional as F
import math
from torch.nn import Linear
from torch_geometric.utils import degree, index_sort, to_dense_adj
from torch_sparse import SparseTensor
from utils import *


class GRN(torch.nn.Module):
def __init__(self, dataset, args, N):
super(GRN, self).__init__()
self.dropout = args.dropout
self.N = N
self.w11=Linear(N, args.hidden)
self.w22=Linear(dataset.num_features, args.hidden)

self.w3=Linear(args.hidden, args.hidden)
self.w4=Linear(args.hidden, args.hidden)

self.out=Linear(args.hidden, dataset.num_classes)


@classmethod
def _norm(cls, edge_index):
adj = to_dense_adj(edge_index).squeeze()
deg = adj.sum(dim=1).to(torch.float)
deg_inv_sqrt = deg.pow(-0.5)
deg_inv_sqrt[deg_inv_sqrt == float('inf')] = 0
adj = deg_inv_sqrt.view(-1, 1) * adj * deg_inv_sqrt.view(1, -1)
return adj

def forward(self, data):
x, edge_index = data.x, data.edge_index

adj_ = SparseTensor(row=edge_index[0], col=edge_index[1],
sparse_sizes=(x.size(0), x.size(0))
).to_torch_sparse_coo_tensor()

adj=self.w11(adj_)
x=self.w22(x)
h1=torch.mul(adj, x)
h1=F.sigmoid(h1)
h=self.out(h1)
return F.log_softmax(h, dim=1), h

class Model1(torch.nn.Module):
def __init__(self, dataset, args, N):
super(Model1, self).__init__()
self.dropout = args.dropout
self.N = N
self.w11=Linear(N, args.hidden)
self.w22=Linear(dataset.num_features, args.hidden)
self.out=Linear(args.hidden, dataset.num_classes)

def forward(self, data):
x, edge_index = data.x, data.edge_index
x=self.w22(x)
h=x
h=self.out(h)
return F.log_softmax(h, dim=1), h

class Model2(torch.nn.Module):
def __init__(self, dataset, args, N):
super(Model2, self).__init__()
self.dropout = args.dropout
self.N = N
self.w11=Linear(N, args.hidden)
self.w22=Linear(dataset.num_features, args.hidden)
self.out=Linear(args.hidden, dataset.num_classes)

def forward(self, data):
x, edge_index = data.x, data.edge_index
adj_ = SparseTensor(row=edge_index[0], col=edge_index[1],
sparse_sizes=(x.size(0), x.size(0))
).to_torch_sparse_coo_tensor()

adj=self.w11(adj_)
h=self.out(adj)
return F.log_softmax(h, dim=1), h
Loading

0 comments on commit 70f8ca7

Please sign in to comment.