forked from techfort/pycv
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
7 changed files
with
180 additions
and
47 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,2 @@ | ||
AKAZE (3.0) | ||
FAST/ORB with OCL and CUDA |
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,59 @@ | ||
import numpy as np | ||
import cv2 | ||
|
||
cap = cv2.VideoCapture(0) | ||
|
||
# take first frame of the video | ||
ret,frame = cap.read() | ||
|
||
# setup initial location of window | ||
r,h,c,w = 300,200,400,300 # simply hardcoded the values | ||
track_window = (c,r,w,h) | ||
|
||
|
||
roi = frame[r:r+h, c:c+w] | ||
hsv_roi = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) | ||
mask = cv2.inRange(hsv_roi, np.array((160., 30.,32.)), np.array((180.,120.,255.))) | ||
roi_hist = cv2.calcHist([hsv_roi],[0],mask,[180],[0,180]) | ||
cv2.normalize(roi_hist,roi_hist,0,255,cv2.NORM_MINMAX) | ||
term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) | ||
|
||
kalman = cv2.KalmanFilter(4,2) | ||
kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32) | ||
kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32) | ||
kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03 | ||
|
||
measurement = np.array((2,1), np.float32) | ||
prediction = np.zeros((2,1), np.float32) | ||
|
||
def center(points): | ||
x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4.0 | ||
y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4.0 | ||
return np.array([np.float32(x), np.float32(y)], np.float32) | ||
|
||
while(1): | ||
ret ,frame = cap.read() | ||
|
||
if ret == True: | ||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) | ||
dst = cv2.calcBackProject([hsv],[0],roi_hist,[0,180],1) | ||
|
||
ret, track_window = cv2.CamShift(dst, track_window, term_crit) | ||
|
||
pts = cv2.boxPoints(ret) | ||
pts = np.int0(pts) | ||
(cx, cy), radius = cv2.minEnclosingCircle(pts) | ||
kalman.correct(center(pts)) | ||
img2 = cv2.polylines(frame,[pts],True, 255,2) | ||
prediction = kalman.predict() | ||
cv2.circle(frame, (prediction[0], prediction[1]), int(radius), (0, 255, 0)) | ||
cv2.imshow('img2',img2) | ||
k = cv2.waitKey(60) & 0xff | ||
if k == 27: | ||
break | ||
|
||
else: | ||
break | ||
|
||
cv2.destroyAllWindows() | ||
cap.release() |
Binary file not shown.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,83 +1,155 @@ | ||
""" | ||
Surveillance Demo: Tracking Pedestrians in Camera Feed | ||
#! /usr/bin/python | ||
|
||
"""Surveillance Demo: Tracking Pedestrians in Camera Feed | ||
The application opens a video (could be a camera or a video file) | ||
and tracks pedestrians in the video. | ||
The application opens a video (could be a camera or a video file) | ||
and tracks pedestrians in the video. | ||
""" | ||
__author__ = "joe minichino" | ||
__copyright__ = "property of mankind." | ||
__license__ = "MIT" | ||
__version__ = "0.0.1" | ||
__maintainer__ = "Joe Minichino" | ||
__email__ = "[email protected]" | ||
__status__ = "Development" | ||
|
||
import cv2 | ||
import numpy as np | ||
import os.path as path | ||
import argparse | ||
|
||
parser = argparse.ArgumentParser() | ||
parser.add_argument("-a", "--algorithm", | ||
help = "m (or nothing) for meanShift and c for camshift") | ||
args = vars(parser.parse_args()) | ||
|
||
def center(points): | ||
"""calculates centroid of a given matrix""" | ||
x = (points[0][0] + points[1][0] + points[2][0] + points[3][0]) / 4 | ||
y = (points[0][1] + points[1][1] + points[2][1] + points[3][1]) / 4 | ||
return np.array([np.float32(x), np.float32(y)], np.float32) | ||
|
||
colors = [[0,0,0],[0,0,255],[0,255,0],[255,0,0],[255,255,0],[255,0,255]] | ||
font = cv2.FONT_HERSHEY_SIMPLEX | ||
|
||
""" | ||
each pedestrian is composed of a ROI, an ID and a Kalman filter | ||
so we create a Pedestrian class to hold the object state | ||
""" | ||
class Pedestrian(): | ||
"""Pedestrian class | ||
each pedestrian is composed of a ROI, an ID and a Kalman filter | ||
so we create a Pedestrian class to hold the object state | ||
""" | ||
def __init__(self, id, frame, track_window): | ||
"""init the pedestrian object with track window coordinates""" | ||
# set up the roi | ||
self.id = int(id) | ||
x,y,w,h = track_window | ||
self.track_window = track_window | ||
self.roi = cv2.cvtColor(frame[y:y+h, x:x+w], cv2.COLOR_BGR2HSV) | ||
|
||
roi_hist = cv2.calcHist([self.roi], [0], None, [16], [0, 180]) | ||
self.roi_hist = cv2.normalize(roi_hist, roi_hist, 0, 255, cv2.NORM_MINMAX) | ||
|
||
# set up the kalman | ||
self.kalman = cv2.KalmanFilter(4,2) | ||
self.kalman.measurementMatrix = np.array([[1,0,0,0],[0,1,0,0]],np.float32) | ||
self.kalman.transitionMatrix = np.array([[1,0,1,0],[0,1,0,1],[0,0,1,0],[0,0,0,1]],np.float32) | ||
self.kalman.processNoiseCov = np.array([[1,0,0,0],[0,1,0,0],[0,0,1,0],[0,0,0,1]],np.float32) * 0.03 | ||
self.measurement = np.array((2,1), np.float32) | ||
self.prediction = np.zeros((2,1), np.float32) | ||
self.term_crit = ( cv2.TERM_CRITERIA_EPS | cv2.TERM_CRITERIA_COUNT, 10, 1 ) | ||
self.center = None | ||
self.update(frame) | ||
|
||
def __del__(self): | ||
print "Pedestrian %d destroyed" % self.id | ||
|
||
def update(frame): | ||
def update(self, frame): | ||
# print "updating %d " % self.id | ||
hsv = cv2.cvtColor(frame, cv2.COLOR_BGR2HSV) | ||
dst = cv2.calcBackProject([hsv],[0], self.roi_hist,[0,180],1) | ||
|
||
ret, track_window = cv2.CamShift(dst, track_window, term_crit) | ||
back_project = cv2.calcBackProject([hsv],[0], self.roi_hist,[0,180],1) | ||
|
||
pts = cv2.boxPoints(ret) | ||
pts = np.int0(pts) | ||
(cx, cy), radius = cv2.minEnclosingCircle(pts) | ||
kalman.correct(center(pts)) | ||
img2 = cv2.polylines(frame,[pts],True, 255,2) | ||
prediction = kalman.predict() | ||
cv2.circle(frame, (prediction[0], prediction[1]), int(radius), (0, 255, 0)) | ||
cv2.imshow('img2',img2) | ||
|
||
print "updating %d" % self.id | ||
|
||
if args.get("algorithm") == "c": | ||
ret, self.track_window = cv2.CamShift(back_project, self.track_window, self.term_crit) | ||
pts = cv2.boxPoints(ret) | ||
pts = np.int0(pts) | ||
self.center = center(pts) | ||
cv2.polylines(frame,[pts],True, 255,1) | ||
|
||
if not args.get("algorithm") or args.get("algorithm") == "m": | ||
ret, self.track_window = cv2.meanShift(back_project, self.track_window, self.term_crit) | ||
x,y,w,h = self.track_window | ||
self.center = center([[x,y],[x+w, y],[x,y+h],[x+w, y+h]]) | ||
cv2.rectangle(frame, (x,y), (x+w, y+h), (0, 0, 255), 1) | ||
|
||
self.kalman.correct(self.center) | ||
prediction = self.kalman.predict() | ||
cv2.circle(frame, (int(prediction[0]), int(prediction[1])), 4, (0, 255, 0), -1) | ||
# fake shadow | ||
cv2.putText(frame, "ID: %d -> %s" % (self.id, self.center), (11, (self.id + 1) * 25 + 1), | ||
font, 0.6, | ||
(0, 0, 0), | ||
1, | ||
cv2.LINE_AA) | ||
# actual info | ||
cv2.putText(frame, "ID: %d -> %s" % (self.id, self.center), (10, (self.id + 1) * 25), | ||
font, 0.6, | ||
(0, 255, 0), | ||
1, | ||
cv2.LINE_AA) | ||
|
||
def main(): | ||
# camera = cv2.VideoCapture(path.join(path.dirname(__file__), "traffic.flv")) | ||
camera = cv2.VideoCapture(path.join(path.dirname(__file__), "768x576.avi")) | ||
ret, frame = camera.read() | ||
counter = 0 | ||
# camera = cv2.VideoCapture(path.join(path.dirname(__file__), "..", "movie.mpg")) | ||
|
||
bs = cv2.createBackgroundSubtractorKNN(detectShadows = True) | ||
cv2.namedWindow("surveillance") | ||
pedestrians = {} | ||
if (ret is False): | ||
print "failed to read frame... exiting." | ||
return | ||
else: | ||
ret, frame = camera.read() | ||
fgmask = bs.apply(frame) | ||
th = cv2.threshold(fgmask.copy(), 244, 255, cv2.THRESH_BINARY)[1] | ||
th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations = 2) | ||
dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,3)), iterations = 2) | ||
image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||
for c in contours: | ||
if cv2.contourArea(c) > 800: | ||
tw = (x,y,w,h) = cv2.boundingRect(c) | ||
#cv2.rectangle(frame, (x,y), (x+w, y+h), (255, 255, 0), 2) | ||
pedestrians[counter] = Pedestrian(counter, frame, tw) | ||
counter += 1 | ||
|
||
firstFrame = True | ||
frames = 0 | ||
|
||
|
||
while True: | ||
grabbed, frame = camera.read() | ||
pedstrian.update(frame) | ||
cv2.imshow("video", frame) | ||
if cv2.waitKey(1000 / 10) >= 0: | ||
print " -------------------- FRAME %d --------------------" % frames | ||
grabbed, frane = camera.read() | ||
if (grabbed is False): | ||
print "failed to grab frame." | ||
break | ||
|
||
ret, frame = camera.read() | ||
fgmask = bs.apply(frame) | ||
|
||
# this is just to let the background subtractor build a bit of history | ||
if frames < 30: | ||
frames += 1 | ||
continue | ||
|
||
|
||
th = cv2.threshold(fgmask.copy(), 127, 255, cv2.THRESH_BINARY)[1] | ||
th = cv2.erode(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (3,3)), iterations = 2) | ||
dilated = cv2.dilate(th, cv2.getStructuringElement(cv2.MORPH_ELLIPSE, (8,3)), iterations = 2) | ||
image, contours, hier = cv2.findContours(dilated, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE) | ||
|
||
counter = 0 | ||
for c in contours: | ||
if cv2.contourArea(c) > 500: | ||
(x,y,w,h) = cv2.boundingRect(c) | ||
cv2.rectangle(frame, (x,y), (x+w, y+h), colors[counter % 6], 1) | ||
# only create pedestrians in the first frame, then just follow the ones you have | ||
if firstFrame is True: | ||
pedestrians[counter] = Pedestrian(counter, frame, (x,y,w,h)) | ||
counter += 1 | ||
|
||
|
||
for i, p in pedestrians.iteritems(): | ||
p.update(frame) | ||
|
||
firstFrame = False | ||
frames += 1 | ||
|
||
cv2.imshow("surveillance", frame) | ||
cv2.imshow("diff", image) | ||
if cv2.waitKey(90) & 0xff == 27: | ||
break | ||
|
||
if __name__ == "__main__": | ||
main() |
Binary file not shown.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.