-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[NN] Add TAGCN nn.module and example (dmlc#788)
* upd * fig edgebatch edges * add test * trigger * Update README.md for pytorch PinSage example. Add noting that the PinSage model example under example/pytorch/recommendation only work with Python 3.6+ as its dataset loader depends on stanfordnlp package which work only with Python 3.6+. * Provid a frame agnostic API to test nn modules on both CPU and CUDA side. 1. make dgl.nn.xxx frame agnostic 2. make test.backend include dgl.nn modules 3. modify test_edge_softmax of test/mxnet/test_nn.py and test/pytorch/test_nn.py work on both CPU and GPU * Fix style * Delete unused code * Make agnostic test only related to tests/backend 1. clear all agnostic related code in dgl.nn 2. make test_graph_conv agnostic to cpu/gpu * Fix code style * fix * doc * Make all test code under tests.mxnet/pytorch.test_nn.py work on both CPU and GPU. * Fix syntex * Remove rand * Add TAGCN nn.module and example * Now tagcn can run on CPU. * Add unitest for TGConv * Fix style * For pubmed dataset, using --lr=0.005 can achieve better acc * Fix style * Fix some descriptions * trigger * Fix doc
- Loading branch information
1 parent
708765f
commit 11fb217
Showing
5 changed files
with
332 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,24 @@ | ||
Topology Adaptive Graph Convolutional networks (TAGCN) | ||
============ | ||
|
||
- Paper link: [https://arxiv.org/abs/1710.10370](https://arxiv.org/abs/1710.10370) | ||
|
||
Dependencies | ||
------------ | ||
- PyTorch 0.4.1+ | ||
- requests | ||
|
||
``bash | ||
pip install torch requests | ||
`` | ||
|
||
Results | ||
------- | ||
Run with following (available dataset: "cora", "citeseer", "pubmed") | ||
```bash | ||
python3 train.py --dataset cora --gpu 0 --self-loop | ||
``` | ||
|
||
* cora: ~0.812 (0.804-0.823) (paper: 0.833) | ||
* citeseer: ~0.715 (paper: 0.714) | ||
* pubmed: ~0.794 (paper: 0.811) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,39 @@ | ||
"""GCN using DGL nn package | ||
References: | ||
- Semi-Supervised Classification with Graph Convolutional Networks | ||
- Paper: https://arxiv.org/abs/1609.02907 | ||
- Code: https://github.com/tkipf/gcn | ||
""" | ||
import torch | ||
import torch.nn as nn | ||
from dgl.nn.pytorch.conv import TGConv | ||
|
||
class TAGCN(nn.Module): | ||
def __init__(self, | ||
g, | ||
in_feats, | ||
n_hidden, | ||
n_classes, | ||
n_layers, | ||
activation, | ||
dropout): | ||
super(TAGCN, self).__init__() | ||
self.g = g | ||
self.layers = nn.ModuleList() | ||
# input layer | ||
self.layers.append(TGConv(in_feats, n_hidden, activation=activation)) | ||
# hidden layers | ||
for i in range(n_layers - 1): | ||
self.layers.append(TGConv(n_hidden, n_hidden, activation=activation)) | ||
# output layer | ||
self.layers.append(TGConv(n_hidden, n_classes)) #activation=None | ||
self.dropout = nn.Dropout(p=dropout) | ||
|
||
def forward(self, features): | ||
h = features | ||
for i, layer in enumerate(self.layers): | ||
if i != 0: | ||
h = self.dropout(h) | ||
h = layer(h, self.g) | ||
return h |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,131 @@ | ||
import argparse, time | ||
import numpy as np | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
from dgl import DGLGraph | ||
from dgl.data import register_data_args, load_data | ||
|
||
from tagcn import TAGCN | ||
|
||
def evaluate(model, features, labels, mask): | ||
model.eval() | ||
with torch.no_grad(): | ||
logits = model(features) | ||
logits = logits[mask] | ||
labels = labels[mask] | ||
_, indices = torch.max(logits, dim=1) | ||
correct = torch.sum(indices == labels) | ||
return correct.item() * 1.0 / len(labels) | ||
|
||
def main(args): | ||
# load and preprocess dataset | ||
data = load_data(args) | ||
features = torch.FloatTensor(data.features) | ||
labels = torch.LongTensor(data.labels) | ||
train_mask = torch.ByteTensor(data.train_mask) | ||
val_mask = torch.ByteTensor(data.val_mask) | ||
test_mask = torch.ByteTensor(data.test_mask) | ||
in_feats = features.shape[1] | ||
n_classes = data.num_labels | ||
n_edges = data.graph.number_of_edges() | ||
print("""----Data statistics------' | ||
#Edges %d | ||
#Classes %d | ||
#Train samples %d | ||
#Val samples %d | ||
#Test samples %d""" % | ||
(n_edges, n_classes, | ||
train_mask.sum().item(), | ||
val_mask.sum().item(), | ||
test_mask.sum().item())) | ||
|
||
if args.gpu < 0: | ||
cuda = False | ||
else: | ||
cuda = True | ||
torch.cuda.set_device(args.gpu) | ||
features = features.cuda() | ||
labels = labels.cuda() | ||
train_mask = train_mask.cuda() | ||
val_mask = val_mask.cuda() | ||
test_mask = test_mask.cuda() | ||
|
||
# graph preprocess and calculate normalization factor | ||
g = data.graph | ||
# add self loop | ||
if args.self_loop: | ||
g.remove_edges_from(g.selfloop_edges()) | ||
g.add_edges_from(zip(g.nodes(), g.nodes())) | ||
g = DGLGraph(g) | ||
n_edges = g.number_of_edges() | ||
|
||
# create TAGCN model | ||
model = TAGCN(g, | ||
in_feats, | ||
args.n_hidden, | ||
n_classes, | ||
args.n_layers, | ||
F.relu, | ||
args.dropout) | ||
|
||
if cuda: | ||
model.cuda() | ||
loss_fcn = torch.nn.CrossEntropyLoss() | ||
|
||
# use optimizer | ||
optimizer = torch.optim.Adam(model.parameters(), | ||
lr=args.lr, | ||
weight_decay=args.weight_decay) | ||
|
||
# initialize graph | ||
dur = [] | ||
for epoch in range(args.n_epochs): | ||
model.train() | ||
if epoch >= 3: | ||
t0 = time.time() | ||
# forward | ||
logits = model(features) | ||
loss = loss_fcn(logits[train_mask], labels[train_mask]) | ||
|
||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
if epoch >= 3: | ||
dur.append(time.time() - t0) | ||
|
||
acc = evaluate(model, features, labels, val_mask) | ||
print("Epoch {:05d} | Time(s) {:.4f} | Loss {:.4f} | Accuracy {:.4f} | " | ||
"ETputs(KTEPS) {:.2f}". format(epoch, np.mean(dur), loss.item(), | ||
acc, n_edges / np.mean(dur) / 1000)) | ||
|
||
print() | ||
acc = evaluate(model, features, labels, test_mask) | ||
print("Test Accuracy {:.4f}".format(acc)) | ||
|
||
|
||
if __name__ == '__main__': | ||
parser = argparse.ArgumentParser(description='TAGCN') | ||
register_data_args(parser) | ||
parser.add_argument("--dropout", type=float, default=0.5, | ||
help="dropout probability") | ||
parser.add_argument("--gpu", type=int, default=-1, | ||
help="gpu") | ||
parser.add_argument("--lr", type=float, default=1e-2, | ||
help="learning rate") | ||
parser.add_argument("--n-epochs", type=int, default=200, | ||
help="number of training epochs") | ||
parser.add_argument("--n-hidden", type=int, default=16, | ||
help="number of hidden tagcn units") | ||
parser.add_argument("--n-layers", type=int, default=1, | ||
help="number of hidden tagcn layers") | ||
parser.add_argument("--weight-decay", type=float, default=5e-4, | ||
help="Weight for L2 loss") | ||
parser.add_argument("--self-loop", action='store_true', | ||
help="graph self-loop (default=False)") | ||
parser.set_defaults(self_loop=False) | ||
args = parser.parse_args() | ||
print(args) | ||
|
||
main(args) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters