-
Notifications
You must be signed in to change notification settings - Fork 20
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
15 changed files
with
1,547 additions
and
4 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,2 +1,3 @@ | ||
dataset/university/*.png | ||
.*.swp | ||
**/*.pyc |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,72 @@ | ||
import matplotlib.pyplot as plt | ||
import numpy | ||
import scipy.misc | ||
from sklearn.cluster import KMeans | ||
import sys | ||
|
||
dataset = 'beach' | ||
margin = 10 | ||
for i in range(len(sys.argv)-1): | ||
if sys.argv[i]=='--dataset': | ||
dataset = sys.argv[i+1] | ||
elif sys.argv[i]=='--margin': | ||
margin = int(sys.argv[i+1]) | ||
|
||
img_id=1 | ||
#fig = plt.figure() | ||
fig = plt.figure(figsize=(20,30)) | ||
|
||
def next_img(): | ||
global image_np, image_display, labels, img_id, segment_id | ||
try: | ||
image_np = scipy.misc.imread('dataset/%s/%d.png'%(dataset,img_id)) | ||
except IOError: | ||
sys.exit(0) | ||
image_display = image_np.copy() | ||
image_np = numpy.mean(image_np, axis=2) | ||
#print(image_np.shape, image_display.shape) | ||
labels = numpy.zeros(image_np.shape, dtype=int) | ||
segment_id=0 | ||
plt.imshow(image_display) | ||
print('Image #%d Segment #%d'%(img_id, segment_id)) | ||
plt.title('Image #%d Segment #%d'%(img_id, segment_id)) | ||
fig.canvas.draw() | ||
|
||
def onkey(event): | ||
if event.key==' ': | ||
global img_id | ||
scipy.misc.imsave('dataset/%s/label%d.png'%(dataset,img_id), labels) | ||
img_id += 1 | ||
next_img() | ||
elif event.key=='r': | ||
next_img() | ||
|
||
def onclick(event): | ||
global segment_id | ||
x,y = int(numpy.round(event.xdata)), int(numpy.round(event.ydata)) | ||
xl = max(0,x-margin) | ||
xr = min(image_np.shape[1],x+margin) | ||
yl = max(0,y-margin) | ||
yr = min(image_np.shape[0],y+margin) | ||
cropped = image_np[yl:yr, xl:xr] | ||
kmeans = KMeans(n_clusters=2).fit(cropped.reshape(-1,1)) | ||
print('%.2f (%d) %.2f (%d)'%(kmeans.cluster_centers_[0], numpy.sum(kmeans.labels_==0), kmeans.cluster_centers_[1], numpy.sum(kmeans.labels_==1))) | ||
target_label = numpy.argmax(kmeans.cluster_centers_) | ||
# target_label = kmeans.labels_.reshape(cropped.shape)[y-yl, x-xl] | ||
mask = kmeans.labels_.reshape(cropped.shape)==target_label | ||
ym, xm = numpy.nonzero(mask) | ||
ym += yl | ||
xm += xl | ||
image_display[ym,xm,:] = [255,0,0] | ||
segment_id += 1 | ||
labels[ym,xm] = segment_id | ||
plt.clf() | ||
plt.imshow(image_display) | ||
print('Image #%d Segment #%d'%(img_id, segment_id)) | ||
plt.title('Image #%d Segment #%d'%(img_id, segment_id)) | ||
fig.canvas.draw() | ||
|
||
fig.canvas.mpl_connect('button_press_event', onclick) | ||
fig.canvas.mpl_connect('key_press_event', onkey) | ||
next_img() | ||
plt.show() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,255 @@ | ||
import matplotlib.pyplot as plt | ||
import numpy | ||
import scipy.misc | ||
import sys | ||
import cv2 | ||
import time | ||
from sklearn.cluster import KMeans | ||
from sklearn.mixture import GaussianMixture | ||
import glob | ||
|
||
method = 'threshold' | ||
#method = 'threshold_adp' | ||
#method = 'backSub' | ||
#method = 'kmeans' | ||
dataset = 'beach' | ||
save_frame = -1 #98, 130 | ||
for i in range(len(sys.argv)-1): | ||
if sys.argv[i]=='--method': | ||
method = sys.argv[i+1] | ||
elif sys.argv[i]=='--dataset': | ||
dataset = sys.argv[i+1] | ||
elif sys.argv[i]=='--save_frame': | ||
save_frame = int(sys.argv[i+1]) | ||
|
||
backSub = cv2.createBackgroundSubtractorMOG2() | ||
#backSub = cv2.createBackgroundSubtractorKNN() | ||
image_id = 1 | ||
fig = plt.figure(figsize=(20,30)) | ||
xbound, ybound, imscale = [int(t) for t in open('dataset/%s/params.txt'%dataset).readline().split()] | ||
num_samples = len(glob.glob('dataset/%s/label*.png'%dataset)) | ||
num_test = num_samples - int(num_samples*0.8) | ||
test_idx = num_samples - num_test + 1 | ||
tp = 0 | ||
fp = 0 | ||
fn = 0 | ||
obj_tp = 0 | ||
obj_fp = 0 | ||
obj_fn = 0 | ||
viz = '--viz' in sys.argv | ||
zoomed_in = True | ||
comp_time = [] | ||
|
||
while True: | ||
if method!='backSub' and image_id < test_idx: | ||
image_id += 1 | ||
continue | ||
try: | ||
I = scipy.misc.imread('dataset/%s/%d.png' % (dataset,image_id)) | ||
if len(I.shape)>2: | ||
I = numpy.mean(I, axis=2) | ||
except IOError: | ||
break | ||
gt = scipy.misc.imread('dataset/%s/label%d.png' % (dataset, image_id)) | ||
gt = gt > 0 | ||
dt = numpy.zeros(I.shape, dtype=bool) | ||
image_np = I[ybound:ybound+imscale, xbound:xbound+imscale] | ||
t1 = time.time() | ||
if method=='threshold': | ||
Isub = image_np.astype(numpy.uint8) | ||
val, mask = cv2.threshold(Isub,75 if dataset=='beach' else 85 if dataset=='shore' else 120,255,cv2.THRESH_BINARY) | ||
elif method=='threshold_adp': | ||
Isub = image_np.astype(numpy.uint8) | ||
blur = cv2.medianBlur(Isub,5) | ||
if dataset=='beach': | ||
mask = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,15,-5) | ||
elif dataset=='shore': | ||
mask = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,15,-8) | ||
else: | ||
mask = cv2.adaptiveThreshold(blur,255,cv2.ADAPTIVE_THRESH_GAUSSIAN_C,cv2.THRESH_BINARY,15,-10) | ||
elif method=='backSub': | ||
if dataset=='combined' and image_id in [97, 225, 249]: | ||
backSub = cv2.createBackgroundSubtractorMOG2() | ||
mask = backSub.apply(image_np) | ||
scipy.misc.imsave('dataset/%s/backSub/%d.png'%(dataset,image_id), mask.astype(numpy.uint8)) | ||
elif method=='kmeans': | ||
window_size = 15 if dataset=='beach' or dataset=='shore' else 100 | ||
margin = 10 if dataset=='beach' or dataset=='shore' else 100 | ||
Isub = image_np.copy() | ||
#start with mean shift | ||
centerX = 0 | ||
centerY = 0 | ||
centerVal = Isub[centerY, centerX] | ||
peaks = [] | ||
peakVal = [] | ||
while True: | ||
while True: | ||
x1 = max(0,centerX-window_size) | ||
x2 = min(Isub.shape[1],centerX+window_size) | ||
y1 = max(0,centerY-window_size) | ||
y2 = min(Isub.shape[0],centerY+window_size) | ||
Itmp = Isub[y1:y2,x1:x2] | ||
maxVal = Itmp.max() | ||
# print(centerX,centerY,centerVal,maxVal) | ||
if maxVal > centerVal: | ||
dy, dx = numpy.unravel_index(numpy.argmax(Itmp), Itmp.shape) | ||
centerY = y1+dy | ||
centerX = x1+dx | ||
centerVal = maxVal | ||
Isub[y1:y2,x1:x2] = 0 | ||
else: | ||
peaks.append([centerX,centerY]) | ||
peakVal.append(centerVal) | ||
Isub[y1:y2,x1:x2] = 0 | ||
# print('Found peak (%d,%d) at %d'%(centerX,centerY,centerVal)) | ||
break | ||
valid_idx = numpy.array(numpy.nonzero(Isub)).T | ||
if len(valid_idx) > 0: | ||
centerY, centerX = valid_idx[0] | ||
centerVal = Isub[centerY, centerX] | ||
else: | ||
break | ||
kmeans = KMeans(n_clusters=2).fit(numpy.array(peakVal).reshape(-1,1)) | ||
# print(kmeans.cluster_centers_, numpy.sum(kmeans.labels_==0), numpy.sum(kmeans.labels_==1)) | ||
target_label = numpy.argmax(kmeans.cluster_centers_) | ||
if dataset=='beach': | ||
peaks = numpy.array(peaks)[numpy.array(peakVal)>100] | ||
elif dataset=='shore': | ||
peaks = numpy.array(peaks)[numpy.array(peakVal)>85] | ||
else: | ||
peaks = numpy.array(peaks)[kmeans.labels_ == target_label] | ||
Isub = image_np.copy() | ||
mask = numpy.zeros(Isub.shape, dtype=bool) | ||
for x,y in peaks: | ||
xl = max(0,x-margin) | ||
xr = min(Isub.shape[1],x+margin) | ||
yl = max(0,y-margin) | ||
yr = min(Isub.shape[0],y+margin) | ||
cropped = Isub[yl:yr, xl:xr] | ||
kmeans = KMeans(n_clusters=2).fit(cropped.reshape(-1,1)) | ||
# print('kmeans %.2f (%d) %.2f (%d)'%(kmeans.cluster_centers_[0], numpy.sum(kmeans.labels_==0), kmeans.cluster_centers_[1], numpy.sum(kmeans.labels_==1))) | ||
target_label = numpy.argmax(kmeans.cluster_centers_) | ||
M = kmeans.labels_.reshape(cropped.shape)==target_label | ||
ym, xm = numpy.nonzero(M) | ||
ym += yl | ||
xm += xl | ||
mask[ym,xm] = True | ||
t2 = time.time() | ||
dt[ybound:ybound+imscale,xbound:xbound+imscale] = mask | ||
err_viz = numpy.zeros((image_np.shape[0], image_np.shape[1], 3), dtype=numpy.uint8) | ||
if image_id < test_idx: | ||
image_id += 1 | ||
continue | ||
|
||
gt_sub = gt[ybound:ybound+imscale, xbound:xbound+imscale] > 0 | ||
dt_sub = dt[ybound:ybound+imscale, xbound:xbound+imscale] | ||
current_tp = numpy.logical_and(gt_sub,dt_sub) | ||
current_fp = numpy.logical_and(numpy.logical_not(gt_sub),dt_sub) | ||
current_fn = numpy.logical_and(gt_sub,numpy.logical_not(dt_sub)) | ||
err_viz[current_tp] = [0,255,0] | ||
err_viz[current_fp] = [0,0,255] | ||
err_viz[current_fn] = [255,0,0] | ||
current_tp = numpy.sum(current_tp) | ||
current_fp = numpy.sum(current_fp) | ||
current_fn = numpy.sum(current_fn) | ||
prc = 1.0*current_tp/(current_tp+current_fp+1) | ||
rcl = 1.0*current_tp/(current_tp+current_fn+1) | ||
tp += current_tp | ||
fp += current_fp | ||
fn += current_fn | ||
|
||
ret, gt_com = cv2.connectedComponents(gt_sub.astype(numpy.uint8)) | ||
ret, dt_com = cv2.connectedComponents(dt_sub.astype(numpy.uint8)) | ||
num_gt = 0 | ||
num_dt = 0 | ||
min_cluster_size = 10 if dataset=='beach' or dataset=='shore' else 200 | ||
for i in range(1, gt_com.max()+1): | ||
if numpy.sum(gt_com==i) > min_cluster_size: | ||
num_gt += 1 | ||
gt_com[gt_com==i] = num_gt | ||
else: | ||
gt_com[gt_com==i] = 0 | ||
for i in range(1, dt_com.max()+1): | ||
if numpy.sum(dt_com==i) > min_cluster_size: | ||
num_dt += 1 | ||
dt_com[dt_com==i] = num_dt | ||
else: | ||
dt_com[dt_com==i] = 0 | ||
current_tp = 0 | ||
dt_matched = numpy.zeros(num_dt, dtype=bool) | ||
for i in range(1, gt_com.max()+1): | ||
for j in range(1, dt_com.max()+1): | ||
if dt_matched[j-1]: | ||
continue | ||
m1 = gt_com==i | ||
m2 = dt_com==j | ||
iou = 1.0 * numpy.sum(numpy.logical_and(m1, m2)) / numpy.sum(numpy.logical_or(m1, m2)) | ||
if iou > 0: | ||
current_tp += 1 | ||
dt_matched[j-1] = True | ||
break | ||
current_fp = numpy.sum(dt_matched==0) | ||
current_fn = num_gt - current_tp | ||
obj_tp += current_tp | ||
obj_fp += current_fp | ||
obj_fn += current_fn | ||
obj_prc = 1.0 * current_tp / (current_tp + current_fp) if current_tp > 0 else 0 | ||
obj_rcl = 1.0 * current_tp / (current_tp + current_fn) if current_tp > 0 else 0 | ||
|
||
gt_viz = numpy.zeros((gt_sub.shape[0], gt_sub.shape[1], 3), dtype=numpy.uint8) | ||
for i in range(1, gt_com.max()+1): | ||
c = numpy.random.randint(0,255,3) | ||
gt_viz[gt_com==i] = c | ||
my, mx = numpy.nonzero(gt_com==i) | ||
x1 = max(mx.min() - 5, 0) | ||
x2 = min(mx.max() + 5, gt_viz.shape[1] - 1) | ||
y1 = max(my.min() - 5, 0) | ||
y2 = min(my.max() + 5, gt_viz.shape[0] - 1) | ||
gt_viz[y1, x1:x2, :] = [255,255,0] | ||
gt_viz[y2, x1:x2, :] = [255,255,0] | ||
gt_viz[y1:y2, x1, :] = [255,255,0] | ||
gt_viz[y1:y2, x2, :] = [255,255,0] | ||
dt_viz = numpy.zeros((dt_sub.shape[0], dt_sub.shape[1], 3), dtype=numpy.uint8) | ||
for i in range(1, dt_com.max()+1): | ||
c = numpy.random.randint(0,255,3) | ||
dt_viz[dt_com==i] = c | ||
my, mx = numpy.nonzero(dt_com==i) | ||
x1 = max(mx.min() - 5, 0) | ||
x2 = min(mx.max() + 5, dt_viz.shape[1] - 1) | ||
y1 = max(my.min() - 5, 0) | ||
y2 = min(my.max() + 5, dt_viz.shape[0] - 1) | ||
dt_viz[y1, x1:x2, :] = [255,255,0] | ||
dt_viz[y2, x1:x2, :] = [255,255,0] | ||
dt_viz[y1:y2, x1, :] = [255,255,0] | ||
dt_viz[y1:y2, x2, :] = [255,255,0] | ||
|
||
comp_time.append(t2 - t1) | ||
# print('Image #%d Precision:%.2f/%.2f Recall:%.2f/%.2f (%.2fs)'%(image_id, prc,obj_prc,rcl,obj_rcl, t2-t1)) | ||
|
||
if image_id == save_frame: | ||
scipy.misc.imsave('results/original_%d.png'%save_frame, image_np.astype(numpy.uint8)) | ||
scipy.misc.imsave('results/detected_%s_%d.png'%(method,save_frame), dt_viz) | ||
scipy.misc.imsave('results/ground_truth_%d.png'%save_frame, gt_viz) | ||
print('save_frame',save_frame) | ||
sys.exit(1) | ||
if viz: | ||
plt.clf() | ||
plt.subplot(2,2,1) | ||
plt.imshow(image_np if zoomed_in else I, cmap='gray') | ||
plt.title('Image #%d'%image_id) | ||
plt.subplot(2,2,2) | ||
plt.imshow(gt_sub if zoomed_in else gt, cmap='gray') | ||
plt.subplot(2,2,3) | ||
plt.imshow(dt_viz if zoomed_in else dt, cmap='gray') | ||
plt.subplot(2,2,4) | ||
plt.imshow(gt_viz, cmap='gray') | ||
plt.pause(0.5) | ||
image_id += 1 | ||
|
||
P = 1.0 * tp / (tp + fp) | ||
R = 1.0 * tp / (tp + fn) | ||
F = 2.0 * P * R / (P + R) | ||
oP = 1.0 * obj_tp / (obj_tp + obj_fp) | ||
oR = 1.0 * obj_tp / (obj_tp + obj_fn) | ||
oF = 2.0 * oP * oR / (oP + oR) | ||
print('Overall Precision:%.3f/%.3f Recall:%.3f/%.3f Fscore:%.3f/%.3f (t=%.6fs)'%(P, oP, R, oR, F, oF, numpy.mean(comp_time))) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
635 650 385 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
0 0 600 |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1 @@ | ||
0 24 1000 |
Oops, something went wrong.