Paper: https://arxiv.org/abs/2406.12045
gsutil cp gs://agent-evals/v3alpha1_dialogflow-v3alpha1-py.tar /content/v3alpha1_dialogflow-v3alpha1-py.tar
tar -xvf content/v3alpha1_dialogflow-v3alpha1-py.tar
venv/bin/python3 dialogflow-v3alpha1-py/setup.py sdist
venv/bin/pip install content/v3alpha1_dialogflow-v3alpha1-py.tar
venv/bin/pip install google-cloud-dialogflow-cx
- Clone this repository:
git clone https://github.com/sierra-research/tau-bench && cd ./tau-bench
- Install from source (which also installs required packages):
pip install -e .
- Set up your OpenAI / Anthropic / Google / Mistral / AnyScale API keys as environment variables.
OPENAI_API_KEY=...
ANTHROPIC_API_KEY=...
GEMINI_API_KEY=...
MISTRAL_API_KEY=...
ANYSCALE_API_KEY=...
Run a function calling agent on the τ-retail environment:
python run.py --env retail --model gpt-4o --max_concurrency 10
Set max concurrency according to your API limit.
Run a decibel agent with gemini as user model:
venv/bin/python3 tau-bench/run.py --env retail --agent_strategy decibel --agent_id 429da584-b933-4372-822c-52d124ba5a26 --project_id df-decibel2-dev-test --start_index 0 --end_index -1 --user_model gemini-1.5-pro