Skip to content

Commit

Permalink
[Relay][Frontend][TFlite] Add test for qnn_mul operator (apache#4395)
Browse files Browse the repository at this point in the history
* Add a function to set the qnn output range wrt each elemwise operation.
* Add comments warning for nonsense clamped output in the tflite/tvm results comparison.
  • Loading branch information
inadob authored and kevinthesun committed Dec 1, 2019
1 parent b16e2ff commit db36951
Showing 1 changed file with 29 additions and 9 deletions.
38 changes: 29 additions & 9 deletions tests/python/frontend/tflite/test_forward.py
Original file line number Diff line number Diff line change
Expand Up @@ -143,7 +143,8 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors,
converter.inference_type = tf.lite.constants.QUANTIZED_UINT8
input_arrays = converter.get_input_arrays()
input_stats = {}
# hardcode the mean_values and std_dev_values (m,s) to be the same for all inputs
# hardcode the mean_values and std_dev_values (m,s) to be the same
# if all inputs are in (float_min; float_max) == (-100, 100)
# s = 255/(fmax-fmin); m = -fmin*s (the zero point)
for i in input_arrays:
input_stats[i] = (128., 1.275)
Expand All @@ -160,6 +161,10 @@ def compare_tflite_with_tvm(in_data, in_name, input_tensors,

tvm_output = run_tvm_graph(tflite_model_buffer, in_data, in_node, target=device,
num_output=len(out_names), out_names=out_names)

# WARNING: the results could well be random values clipped to 0 or 255 because of badly tuned output
# range for the specific operator. While adding test ensure that we aren't getting only clipped values
# in output tensors that still pass the assertion. For reference see _test_elemwise_qnn_out_range()
if quantized:
for i in range(len(tflite_output)):
# allow absolute tolerance of 1 in the quantized results
Expand Down Expand Up @@ -562,7 +567,7 @@ def test_forward_concatenation():
# Element-wise
# ---

def _test_elemwise(math_op, data, fused_activation_function=None, quantized=False):
def _test_elemwise(math_op, data, fused_activation_function=None, quantized=False, qnn_op=None):
""" One iteration of elemwise """

assert len(data) == 2
Expand All @@ -578,7 +583,9 @@ def _test_elemwise(math_op, data, fused_activation_function=None, quantized=Fals
tf.quantization.fake_quant_with_min_max_args(in_data[1], min=-100, max=100, name="inq_1")]
out = math_op(inq_data[0], inq_data[1])
out = with_fused_activation_function(out, fused_activation_function)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out")
# set the quantized output range with respect to the operation
out_min, out_max = _test_elemwise_qnn_out_range(qnn_op)
out = tf.quantization.fake_quant_with_min_max_args(out, min=out_min, max=out_max, name="out")
compare_tflite_with_tvm(data, ['inq_0:0', 'inq_1:0'], inq_data, [out], quantized=True)
else:
out = math_op(in_data[0], in_data[1])
Expand All @@ -595,7 +602,8 @@ def _test_elemwise(math_op, data, fused_activation_function=None, quantized=Fals
# the 2nd tensor is treated as constant and directly added as part of the operation
out = math_op(inq_data, ops.convert_to_tensor(inq_const, dtype='float32', name='inq_const'))
out = with_fused_activation_function(out, fused_activation_function)
out = tf.quantization.fake_quant_with_min_max_args(out, min=-200, max=200, name="out")
out_min, out_max = _test_elemwise_qnn_out_range(qnn_op)
out = tf.quantization.fake_quant_with_min_max_args(out, min=out_min, max=out_max, name="out")
compare_tflite_with_tvm(data[0], ['inq_0:0'], inq_data, [out], quantized=True)
else:
out = math_op(in_data[0], ops.convert_to_tensor(data[1], dtype=data[1].dtype))
Expand All @@ -606,9 +614,9 @@ def _test_elemwise(math_op, data, fused_activation_function=None, quantized=Fals
# Add
# ---

def _test_add(data, fused_activation_function=None, quantized=False):
def _test_add(data, fused_activation_function=None, quantized=False, qnn_op=None):
""" One iteration of add """
return _test_elemwise(math_ops.add, data, fused_activation_function, quantized)
return _test_elemwise(math_ops.add, data, fused_activation_function, quantized, qnn_op)

#######################################################################
# Subtract
Expand All @@ -620,9 +628,10 @@ def _test_sub(data, fused_activation_function=None):
#######################################################################
# Mul
# ---
def _test_mul(data, fused_activation_function=None):

def _test_mul(data, fused_activation_function=None, quantized=False, qnn_op=None):
""" One iteration of mul """
return _test_elemwise(math_ops.multiply, data, fused_activation_function)
return _test_elemwise(math_ops.multiply, data, fused_activation_function, quantized, qnn_op)

#######################################################################
# Divide
Expand Down Expand Up @@ -671,7 +680,17 @@ def _test_forward_elemwise(testop):

def _test_forward_elemwise_quantized(testop):
testop([np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8),
np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8)], quantized=True)
np.array(np.random.uniform(0, 255, (3, 6)), dtype=np.uint8)], quantized=True, qnn_op=testop)

def _test_elemwise_qnn_out_range(qnn_op):
# set the fake_quant output range if input tensors are in [-100, 100] float32
qnn_out_range = {
_test_add: (-200, 200),
_test_sub: (-200, 200),
_test_mul: (-1e+4, 1e+4),
}

return qnn_out_range[qnn_op]

def test_all_elemwise():
_test_forward_elemwise(_test_add)
Expand All @@ -682,6 +701,7 @@ def test_all_elemwise():
_test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_sub, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_mul)
_test_forward_elemwise_quantized(_test_mul)
_test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU"))
_test_forward_elemwise(partial(_test_mul, fused_activation_function="RELU6"))
_test_forward_elemwise(_test_div)
Expand Down

0 comments on commit db36951

Please sign in to comment.