forked from PaddlePaddle/FastDeploy
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Model] Support PP-ShiTuV2 models for PaddleClas (PaddlePaddle#1900)
* [cmake] add faiss.cmake -> pp-shituv2 * [PP-ShiTuV2] Support PP-ShituV2-Det model * [PP-ShiTuV2] Support PP-ShiTuV2-Det model * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [PP-ShiTuV2] Add PPShiTuV2Recognizer c++&python support * [Bug Fix] fix ppshitu_pybind error * [benchmark] Add ppshituv2-det c++ benchmark * [examples] Add PP-ShiTuV2 det & rec examples * [vision] Update vision classification result * [Bug Fix] fix trt shapes setting errors
- Loading branch information
Showing
31 changed files
with
1,835 additions
and
51 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,89 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "flags.h" | ||
#include "macros.h" | ||
#include "option.h" | ||
|
||
namespace vision = fastdeploy::vision; | ||
namespace benchmark = fastdeploy::benchmark; | ||
|
||
DEFINE_bool(no_nms, false, "Whether the model contains nms."); | ||
|
||
int main(int argc, char* argv[]) { | ||
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) | ||
// Initialization | ||
auto option = fastdeploy::RuntimeOption(); | ||
if (!CreateRuntimeOption(&option, argc, argv, true)) { | ||
return -1; | ||
} | ||
auto im = cv::imread(FLAGS_image); | ||
std::unordered_map<std::string, std::string> config_info; | ||
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path, | ||
&config_info); | ||
std::string model_name, params_name, config_name; | ||
auto model_format = fastdeploy::ModelFormat::PADDLE; | ||
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name, | ||
&model_format, config_info)) { | ||
return -1; | ||
} | ||
|
||
auto model_file = FLAGS_model + sep + model_name; | ||
auto params_file = FLAGS_model + sep + params_name; | ||
auto config_file = FLAGS_model + sep + config_name; | ||
if (config_info["backend"] == "paddle_trt") { | ||
option.paddle_infer_option.collect_trt_shape = true; | ||
} | ||
if (config_info["backend"] == "paddle_trt" || | ||
config_info["backend"] == "trt") { | ||
option.trt_option.SetShape("image", {1, 3, 640, 640}, {1, 3, 640, 640}, | ||
{1, 3, 640, 640}); | ||
option.trt_option.SetShape("scale_factor", {1, 2}, {1, 2}, {1, 2}); | ||
option.trt_option.SetShape("im_shape", {1, 2}, {1, 2}, {1, 2}); | ||
} | ||
auto model = vision::classification::PPShiTuV2Detector( | ||
model_file, params_file, config_file, option, model_format); | ||
if (FLAGS_no_nms) { | ||
model.GetPostprocessor().ApplyNMS(); | ||
} | ||
vision::DetectionResult res; | ||
if (config_info["precision_compare"] == "true") { | ||
// Run once at least | ||
model.Predict(im, &res); | ||
// 1. Test result diff | ||
std::cout << "=============== Test result diff =================\n"; | ||
// Save result to -> disk. | ||
std::string det_result_path = "ppshituv2_det_result.txt"; | ||
benchmark::ResultManager::SaveDetectionResult(res, det_result_path); | ||
// Load result from <- disk. | ||
vision::DetectionResult res_loaded; | ||
benchmark::ResultManager::LoadDetectionResult(&res_loaded, det_result_path); | ||
// Calculate diff between two results. | ||
auto det_diff = | ||
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); | ||
std::cout << "Boxes diff: mean=" << det_diff.boxes.mean | ||
<< ", max=" << det_diff.boxes.max | ||
<< ", min=" << det_diff.boxes.min << std::endl; | ||
std::cout << "Label_ids diff: mean=" << det_diff.labels.mean | ||
<< ", max=" << det_diff.labels.max | ||
<< ", min=" << det_diff.labels.min << std::endl; | ||
} | ||
// Run profiling | ||
BENCHMARK_MODEL(model, model.Predict(im, &res)) | ||
auto vis_im = vision::VisDetection(im, res, 0.5f); | ||
cv::imwrite("vis_result.jpg", vis_im); | ||
std::cout << "Visualized result saved in ./vis_result.jpg" << std::endl; | ||
#endif | ||
return 0; | ||
} |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
// Copyright (c) 2023 PaddlePaddle Authors. All Rights Reserved. | ||
// | ||
// Licensed under the Apache License, Version 2.0 (the "License"); | ||
// you may not use this file except in compliance with the License. | ||
// You may obtain a copy of the License at | ||
// | ||
// http://www.apache.org/licenses/LICENSE-2.0 | ||
// | ||
// Unless required by applicable law or agreed to in writing, software | ||
// distributed under the License is distributed on an "AS IS" BASIS, | ||
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. | ||
// See the License for the specific language governing permissions and | ||
// limitations under the License. | ||
|
||
#include "flags.h" | ||
#include "macros.h" | ||
#include "option.h" | ||
|
||
namespace vision = fastdeploy::vision; | ||
namespace benchmark = fastdeploy::benchmark; | ||
|
||
DEFINE_string(trt_shape, "1,3,224,224:1,3,224,224:1,3,224,224", | ||
"Set min/opt/max shape for trt/paddle_trt backend." | ||
"eg:--trt_shape 1,3,224,224:1,3,224,224:1,3,224,224"); | ||
|
||
DEFINE_string(input_name, "x", | ||
"Set input name for trt/paddle_trt backend." | ||
"eg:--input_names x"); | ||
|
||
int main(int argc, char* argv[]) { | ||
#if defined(ENABLE_BENCHMARK) && defined(ENABLE_VISION) | ||
// Initialization | ||
auto option = fastdeploy::RuntimeOption(); | ||
if (!CreateRuntimeOption(&option, argc, argv, true)) { | ||
return -1; | ||
} | ||
auto im = cv::imread(FLAGS_image); | ||
std::unordered_map<std::string, std::string> config_info; | ||
benchmark::ResultManager::LoadBenchmarkConfig(FLAGS_config_path, | ||
&config_info); | ||
// Set max_batch_size 1 for best performance | ||
if (config_info["backend"] == "paddle_trt") { | ||
option.trt_option.max_batch_size = 1; | ||
} | ||
std::string model_name, params_name, config_name; | ||
auto model_format = fastdeploy::ModelFormat::PADDLE; | ||
if (!UpdateModelResourceName(&model_name, ¶ms_name, &config_name, | ||
&model_format, config_info)) { | ||
return -1; | ||
} | ||
|
||
auto model_file = FLAGS_model + sep + model_name; | ||
auto params_file = FLAGS_model + sep + params_name; | ||
auto config_file = FLAGS_model + sep + config_name; | ||
if (config_info["backend"] == "paddle_trt") { | ||
option.paddle_infer_option.collect_trt_shape = true; | ||
} | ||
if (config_info["backend"] == "paddle_trt" || | ||
config_info["backend"] == "trt") { | ||
std::vector<std::vector<int32_t>> trt_shapes = | ||
benchmark::ResultManager::GetInputShapes(FLAGS_trt_shape); | ||
option.trt_option.SetShape(FLAGS_input_name, trt_shapes[0], trt_shapes[1], | ||
trt_shapes[2]); | ||
} | ||
|
||
auto model = vision::classification::PPShiTuV2Recognizer( | ||
model_file, params_file, config_file, option, model_format); | ||
vision::ClassifyResult res; | ||
if (config_info["precision_compare"] == "true") { | ||
// Run once at least | ||
model.Predict(im, &res); | ||
// 1. Test result diff | ||
std::cout << "=============== Test result diff =================\n"; | ||
// Save result to -> disk. | ||
std::string cls_result_path = "ppcls_result.txt"; | ||
benchmark::ResultManager::SaveClassifyResult(res, cls_result_path); | ||
// Load result from <- disk. | ||
vision::ClassifyResult res_loaded; | ||
benchmark::ResultManager::LoadClassifyResult(&res_loaded, cls_result_path); | ||
// Calculate diff between two results. | ||
auto cls_diff = | ||
benchmark::ResultManager::CalculateDiffStatis(res, res_loaded); | ||
std::cout << "Labels diff: mean=" << cls_diff.labels.mean | ||
<< ", max=" << cls_diff.labels.max | ||
<< ", min=" << cls_diff.labels.min << std::endl; | ||
std::cout << "Scores diff: mean=" << cls_diff.scores.mean | ||
<< ", max=" << cls_diff.scores.max | ||
<< ", min=" << cls_diff.scores.min << std::endl; | ||
} | ||
BENCHMARK_MODEL(model, model.Predict(im, &res)) | ||
#endif | ||
return 0; | ||
} |
Oops, something went wrong.