Skip to content

johnarevalo/compound-annotator

 
 

Repository files navigation

compound-annotator

Credits: Lewis Mervin for the orignal source code.

Setup

We use mamba to manage the computational environment.

To install mamba see instructions.

After installing mamba, execute the following to install and navigate to the environment:

# First, install the `genemod` conda environment
mamba env create --force --file environment.yml

# If you had already installed this environment and now want to update it
mamba env update --file environment.yml --prune

# Then, activate the environment and you're all set!
mamba activate compound-annotator

Drug Repurposing Hub annotations

See notebook repurposing-annotations.ipynb for details.

ChEMBL annotations

The steps below produce the following file:

  • data/chembl_annotation_filtered.csv.gz: ChEMBL annotation file filtered to only include rows with standard_inchi_key that are present in the compound.csv.gz file (this is the metadata file from the jump-cellpainting/datasets repo).

Here's how we'd use this file to annotate the compound.csv.gz file:

import pandas as pd

# Read in the compound metadata file
compound_df = pd.read_csv("data/compound.csv.gz")

# Read in the ChEMBL annotation file
chembl_df = pd.read_csv("data/chembl_annotation_filtered.csv.gz")

# Merge the two dataframes
merged_df = compound_df.merge(chembl_df, left_on="Metadata_InChIKey", right_on="standard_inchi_key")

# Count the number of rows in the merged dataframe
merged_df.shape
# (44017, 11)

# Select the first row and print the values of the columns
merged_df.iloc[0]
Metadata_JCP2022                                         JCP2022_000003
Metadata_InChIKey                           AAALVYBICLMAMA-UHFFFAOYSA-N
Metadata_InChI        InChI=1S/C20H15N3O2/c24-19-15-11-17(21-13-7-3-...
assay_chembl_id                                                   29499
target_chembl_id                                              CHEMBL203
assay_type                                                            B
molecule_chembl_id                                         CHEMBL268868
pchembl_value                                                       6.8
confidence_score                                                      8
standard_inchi_key                          AAALVYBICLMAMA-UHFFFAOYSA-N
pref_name                                                          DAPH

The following files are also produced:

  • data/chembl_annotation.csv.gz: ChEMBL annotation file. This is the raw output of a SQL query run on the ChEMBL SQLite database to get a subset of the data that we need.
  • data/inchikey_chembl_filtered.csv.gz: Mapping of standard_inchi_key to molecule_chembl_id from the filtered ChEMBL annotation file.

Steps for producing ChEMBL annotations

Create annotation file

On a VM with >40G disk space, download ChEMBL SQLite database (4.2G compressed, 23G uncompressed)

wget https://ftp.ebi.ac.uk/pub/databases/chembl/ChEMBLdb/latest/chembl_31_sqlite.tar.gz
tar -xvzf chembl_31_sqlite.tar.gz
tree chembl_31
# chembl_31
# └── chembl_31_sqlite
#     ├── INSTALL_sqlite
#     └── chembl_31.db

Run a SQL query to extract ChEMBL annotation

sqlite3 -header -csv chembl_31/chembl_31_sqlite/chembl_31.db < sql/extract_chembl_annotation.sql | gzip > data/chembl_annotation.csv.gz

View the top 5 rows of the annotation file

python csv2md.py <(gzcat data/chembl_annotation.csv.gz|head -n 5)
assay_chembl_id target_chembl_id assay_type molecule_chembl_id pchembl_value confidence_score standard_inchi_key pref_name
1714633 CHEMBL3987582 B CHEMBL4107559 6.07 7 UVVXRMZCPKQLAO-OAHLLOKOSA-N
1714649 CHEMBL3987582 B CHEMBL4107559 5.86 7 UVVXRMZCPKQLAO-OAHLLOKOSA-N
1714633 CHEMBL3987582 B CHEMBL4108338 6.15 7 OZBMIGDQBBMIRA-CQSZACIVSA-N
1714649 CHEMBL3987582 B CHEMBL4108338 5.84 7 OZBMIGDQBBMIRA-CQSZACIVSA-N

Count the number of rows in the annotation file

gzcat data/chembl_annotation.csv.gz | wc -l
# 1185184

Count the number of unique values of each column in the annotation file

function count_unique_values() {
    data_file=$1
    colnames=$2
    for colname in ${colnames}; do
        echo -n $colname:
        gzcat ${data_file} | csvcut -c ${colname} | tail -n +2 | sort | uniq | wc -l | tr -s " "
    done
}
data_file=data/chembl_annotation.csv.gz
colnames="assay_chembl_id target_chembl_id assay_type molecule_chembl_id standard_inchi_key pref_name"
count_unique_values ${data_file} "${colnames}"
assay_chembl_id: 99298
target_chembl_id: 3076
assay_type: 2
molecule_chembl_id: 556272
standard_inchi_key: 56272
pref_name: 6536

Create filtered annotation file

Filter the annotation file to only include rows with standard_inchi_key that are present in the compound.csv.gz file

wget https://raw.githubusercontent.com/jump-cellpainting/datasets/0682dd2d52e4d68208ab4af3a0bd114ca557cb0e/metadata/compound.csv.gz
mv compound.csv.gz data/
gzcat data/compound.csv.gz | csvcut -c Metadata_InChIKey| tail -n +2 | sort | uniq > data/compound_inchi_key.txt

Now find rows in data/chembl_annotation.csv that have standard_inchi_key that are present in data/compound_inchi_key.txt

csvgrep -c standard_inchi_key -f data/compound_inchi_key.txt <(gzcat data/chembl_annotation.csv.gz) | gzip > data/chembl_annotation_filtered.csv.gz

Count the number of rows in the filtered annotation file

gzcat data/chembl_annotation_filtered.csv.gz | wc -l
# 44018

Count the number of unique values of each column in the filtered annotation file

data_file=data/chembl_annotation_filtered.csv.gz
colnames="assay_chembl_id target_chembl_id assay_type molecule_chembl_id standard_inchi_key pref_name"
count_unique_values ${data_file} "${colnames}"
assay_chembl_id: 18856
target_chembl_id: 1744
assay_type: 2
molecule_chembl_id: 4718
standard_inchi_key: 4718
pref_name: 1340

Here are all the commands in one place to create chembl_annotation_filtered.csv.gz from chembl_annotation.csv.gz and compound.csv.gz:

commit=0682dd2d52e4d68208ab4af3a0bd114ca557cb0e

wget https://raw.githubusercontent.com/jump-cellpainting/datasets/${commit}/metadata/compound.csv.gz

mv compound.csv.gz data/

gzcat data/compound.csv.gz | csvcut -c Metadata_InChIKey| tail -n +2 | sort | uniq > data/compound_inchi_key.txt

csvgrep -c standard_inchi_key -f data/compound_inchi_key.txt <(gzcat data/chembl_annotation.csv.gz) | gzip > data/chembl_annotation_filtered.csv.gz

Create mapping between standard_inchi_key and chembl_id

Run SQL query to get mapping between standard_inchi_key and chembl_id

sqlite3 -header -csv chembl_31/chembl_31_sqlite/chembl_31.db < sql/extract_chembl_inchikey_mapping.sql  | gzip > data/inchikey_chembl.csv.gz

View the top 5 rows of the inchikey_chembl.csv.gz file

python csv2md.py <(gzcat data/inchikey_chembl.csv.gz|head -n 5)
molecule_chembl_id standard_inchi_key pref_name
CHEMBL592894 AAAJHRMBUHXWLD-UHFFFAOYSA-N
CHEMBL268868 AAALVYBICLMAMA-UHFFFAOYSA-N DAPH
CHEMBL1734241 AAAZRMGPBSWFDK-UHFFFAOYSA-N
CHEMBL3449946 AABSTWCOLWSFRA-UHFFFAOYSA-N

Count the number of rows in the inchikey_chembl.csv.gz file

gzcat data/inchikey_chembl.csv.gz | wc -l
# 2304876

Count the number of rows in the compound_inchi_key.txt file

wc -l data/compound_inchi_key.txt
# 116753

Now find rows in data/inchikey_chembl.csv.gz that have standard_inchi_key that are present in data/compound_inchi_key.txt

csvgrep -c standard_inchi_key -f data/compound_inchi_key.txt <(gzcat data/inchikey_chembl.csv.gz) | gzip > data/inchikey_chembl_filtered.csv.gz

Count the number of unique values of each column in inchikey_chembl_filtered.csv.gz

data_file=data/inchikey_chembl_filtered.csv.gz
colnames="molecule_chembl_id standard_inchi_key pref_name"
count_unique_values ${data_file} "${colnames}"
molecule_chembl_id: 30072
standard_inchi_key: 30072
pref_name: 2508

About

No description, website, or topics provided.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 73.6%
  • Python 26.4%