-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[Regression Test] Add sage neighbor sample test for reddit (dmlc#2449)
* Add sage neighbor sample test for reddit * Add ogbn-products dataset * upd * upd * use symbolic other than copy data for ogb datasets * upd * upd * Add graphsage unsupervised neighbor sampler Co-authored-by: Ubuntu <[email protected]> Co-authored-by: Minjie Wang <[email protected]>
- Loading branch information
1 parent
3d1f2e8
commit f8b3ebc
Showing
4 changed files
with
370 additions
and
2 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,133 @@ | ||
import dgl | ||
import torch as th | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import torch.multiprocessing as mp | ||
from torch.utils.data import DataLoader | ||
import dgl.nn.pytorch as dglnn | ||
import time | ||
|
||
from .. import utils | ||
|
||
class SAGE(nn.Module): | ||
def __init__(self, | ||
in_feats, | ||
n_hidden, | ||
n_classes, | ||
n_layers, | ||
activation, | ||
dropout): | ||
super().__init__() | ||
self.n_layers = n_layers | ||
self.n_hidden = n_hidden | ||
self.n_classes = n_classes | ||
self.layers = nn.ModuleList() | ||
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean')) | ||
for i in range(1, n_layers - 1): | ||
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean')) | ||
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean')) | ||
self.dropout = nn.Dropout(dropout) | ||
self.activation = activation | ||
|
||
def forward(self, blocks, x): | ||
h = x | ||
for l, (layer, block) in enumerate(zip(self.layers, blocks)): | ||
h = layer(block, h) | ||
if l != len(self.layers) - 1: | ||
h = self.activation(h) | ||
h = self.dropout(h) | ||
return h | ||
|
||
def load_subtensor(g, seeds, input_nodes, device): | ||
""" | ||
Copys features and labels of a set of nodes onto GPU. | ||
""" | ||
batch_inputs = g.ndata['features'][input_nodes].to(device) | ||
batch_labels = g.ndata['labels'][seeds].to(device) | ||
return batch_inputs, batch_labels | ||
|
||
@utils.benchmark('time', 3600) | ||
@utils.parametrize('data', ['reddit', 'ogbn-products']) | ||
def track_time(data): | ||
data = utils.process_data(data) | ||
device = utils.get_bench_device() | ||
g = data[0] | ||
g.ndata['features'] = g.ndata['feat'] | ||
g.ndata['labels'] = g.ndata['label'] | ||
in_feats = g.ndata['features'].shape[1] | ||
n_classes = data.num_labels | ||
|
||
# Create csr/coo/csc formats before launching training processes with multi-gpu. | ||
# This avoids creating certain formats in each sub-process, which saves momory and CPU. | ||
g.create_formats_() | ||
|
||
num_epochs = 20 | ||
num_hidden = 16 | ||
num_layers = 2 | ||
fan_out = '10,25' | ||
batch_size = 1024 | ||
lr = 0.003 | ||
dropout = 0.5 | ||
num_workers = 4 | ||
|
||
train_nid = th.nonzero(g.ndata['train_mask'], as_tuple=True)[0] | ||
|
||
# Create PyTorch DataLoader for constructing blocks | ||
sampler = dgl.dataloading.MultiLayerNeighborSampler( | ||
[int(fanout) for fanout in fan_out.split(',')]) | ||
dataloader = dgl.dataloading.NodeDataLoader( | ||
g, | ||
train_nid, | ||
sampler, | ||
batch_size=batch_size, | ||
shuffle=True, | ||
drop_last=False, | ||
num_workers=num_workers) | ||
|
||
# Define model and optimizer | ||
model = SAGE(in_feats, num_hidden, n_classes, num_layers, F.relu, dropout) | ||
model = model.to(device) | ||
loss_fcn = nn.CrossEntropyLoss() | ||
loss_fcn = loss_fcn.to(device) | ||
optimizer = optim.Adam(model.parameters(), lr=lr) | ||
|
||
# dry run one epoch | ||
for step, (input_nodes, seeds, blocks) in enumerate(dataloader): | ||
# Load the input features as well as output labels | ||
#batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device) | ||
blocks = [block.int().to(device) for block in blocks] | ||
batch_inputs = blocks[0].srcdata['features'] | ||
batch_labels = blocks[-1].dstdata['labels'] | ||
|
||
# Compute loss and prediction | ||
batch_pred = model(blocks, batch_inputs) | ||
loss = loss_fcn(batch_pred, batch_labels) | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
# Training loop | ||
avg = 0 | ||
iter_tput = [] | ||
t0 = time.time() | ||
for epoch in range(num_epochs): | ||
# Loop over the dataloader to sample the computation dependency graph as a list of | ||
# blocks. | ||
for step, (input_nodes, seeds, blocks) in enumerate(dataloader): | ||
# Load the input features as well as output labels | ||
#batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device) | ||
blocks = [block.int().to(device) for block in blocks] | ||
batch_inputs = blocks[0].srcdata['features'] | ||
batch_labels = blocks[-1].dstdata['labels'] | ||
|
||
# Compute loss and prediction | ||
batch_pred = model(blocks, batch_inputs) | ||
loss = loss_fcn(batch_pred, batch_labels) | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
t1 = time.time() | ||
|
||
return t1 - t0 |
183 changes: 183 additions & 0 deletions
183
benchmarks/benchmarks/model_speed/bench_sage_unsupervised_ns.py
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,183 @@ | ||
import dgl | ||
import numpy as np | ||
import torch as th | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
import torch.multiprocessing as mp | ||
from torch.utils.data import DataLoader | ||
import dgl.nn.pytorch as dglnn | ||
import dgl.function as fn | ||
import time | ||
import traceback | ||
|
||
from .. import utils | ||
|
||
class NegativeSampler(object): | ||
def __init__(self, g, k, neg_share=False): | ||
self.weights = g.in_degrees().float() ** 0.75 | ||
self.k = k | ||
self.neg_share = neg_share | ||
|
||
def __call__(self, g, eids): | ||
src, _ = g.find_edges(eids) | ||
n = len(src) | ||
if self.neg_share and n % self.k == 0: | ||
dst = self.weights.multinomial(n, replacement=True) | ||
dst = dst.view(-1, 1, self.k).expand(-1, self.k, -1).flatten() | ||
else: | ||
dst = self.weights.multinomial(n*self.k, replacement=True) | ||
src = src.repeat_interleave(self.k) | ||
return src, dst | ||
|
||
def load_subtensor(g, input_nodes, device): | ||
""" | ||
Copys features and labels of a set of nodes onto GPU. | ||
""" | ||
batch_inputs = g.ndata['features'][input_nodes].to(device) | ||
return batch_inputs | ||
|
||
class SAGE(nn.Module): | ||
def __init__(self, | ||
in_feats, | ||
n_hidden, | ||
n_classes, | ||
n_layers, | ||
activation, | ||
dropout): | ||
super().__init__() | ||
self.n_layers = n_layers | ||
self.n_hidden = n_hidden | ||
self.n_classes = n_classes | ||
self.layers = nn.ModuleList() | ||
self.layers.append(dglnn.SAGEConv(in_feats, n_hidden, 'mean')) | ||
for i in range(1, n_layers - 1): | ||
self.layers.append(dglnn.SAGEConv(n_hidden, n_hidden, 'mean')) | ||
self.layers.append(dglnn.SAGEConv(n_hidden, n_classes, 'mean')) | ||
self.dropout = nn.Dropout(dropout) | ||
self.activation = activation | ||
|
||
def forward(self, blocks, x): | ||
h = x | ||
for l, (layer, block) in enumerate(zip(self.layers, blocks)): | ||
h = layer(block, h) | ||
if l != len(self.layers) - 1: | ||
h = self.activation(h) | ||
h = self.dropout(h) | ||
return h | ||
|
||
def load_subtensor(g, input_nodes, device): | ||
""" | ||
Copys features and labels of a set of nodes onto GPU. | ||
""" | ||
batch_inputs = g.ndata['features'][input_nodes].to(device) | ||
return batch_inputs | ||
|
||
class CrossEntropyLoss(nn.Module): | ||
def forward(self, block_outputs, pos_graph, neg_graph): | ||
with pos_graph.local_scope(): | ||
pos_graph.ndata['h'] = block_outputs | ||
pos_graph.apply_edges(fn.u_dot_v('h', 'h', 'score')) | ||
pos_score = pos_graph.edata['score'] | ||
with neg_graph.local_scope(): | ||
neg_graph.ndata['h'] = block_outputs | ||
neg_graph.apply_edges(fn.u_dot_v('h', 'h', 'score')) | ||
neg_score = neg_graph.edata['score'] | ||
|
||
score = th.cat([pos_score, neg_score]) | ||
label = th.cat([th.ones_like(pos_score), th.zeros_like(neg_score)]).long() | ||
loss = F.binary_cross_entropy_with_logits(score, label.float()) | ||
return loss | ||
|
||
@utils.benchmark('time', 3600) | ||
@utils.parametrize('data', ['reddit', 'ogbn-products']) | ||
def track_time(data): | ||
data = utils.process_data(data) | ||
device = utils.get_bench_device() | ||
g = data[0] | ||
g.ndata['features'] = g.ndata['feat'] | ||
g.ndata['labels'] = g.ndata['label'] | ||
in_feats = g.ndata['features'].shape[1] | ||
n_classes = data.num_labels | ||
|
||
# Create csr/coo/csc formats before launching training processes with multi-gpu. | ||
# This avoids creating certain formats in each sub-process, which saves momory and CPU. | ||
g.create_formats_() | ||
|
||
num_epochs = 5 | ||
num_hidden = 16 | ||
num_layers = 2 | ||
fan_out = '10,25' | ||
batch_size = 1024 | ||
lr = 0.003 | ||
dropout = 0.5 | ||
num_workers = 4 | ||
num_negs = 4 | ||
|
||
train_nid = th.nonzero(g.ndata['train_mask'], as_tuple=True)[0] | ||
|
||
n_edges = g.number_of_edges() | ||
train_seeds = np.arange(n_edges) | ||
|
||
# Create PyTorch DataLoader for constructing blocks | ||
sampler = dgl.dataloading.MultiLayerNeighborSampler( | ||
[int(fanout) for fanout in fan_out.split(',')]) | ||
dataloader = dgl.dataloading.EdgeDataLoader( | ||
g, train_seeds, sampler, exclude='reverse_id', | ||
# For each edge with ID e in Reddit dataset, the reverse edge is e ± |E|/2. | ||
reverse_eids=th.cat([ | ||
th.arange(n_edges // 2, n_edges), | ||
th.arange(0, n_edges // 2)]), | ||
negative_sampler=NegativeSampler(g, num_negs), | ||
batch_size=batch_size, | ||
shuffle=True, | ||
drop_last=False, | ||
pin_memory=True, | ||
num_workers=num_workers) | ||
|
||
# Define model and optimizer | ||
model = SAGE(in_feats, num_hidden, n_classes, num_layers, F.relu, dropout) | ||
model = model.to(device) | ||
loss_fcn = CrossEntropyLoss() | ||
loss_fcn = loss_fcn.to(device) | ||
optimizer = optim.Adam(model.parameters(), lr=lr) | ||
|
||
# dry run one epoch | ||
for step, (input_nodes, pos_graph, neg_graph, blocks) in enumerate(dataloader): | ||
# Load the input features as well as output labels | ||
#batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device) | ||
batch_inputs = load_subtensor(g, input_nodes, device) | ||
|
||
pos_graph = pos_graph.to(device) | ||
neg_graph = neg_graph.to(device) | ||
blocks = [block.int().to(device) for block in blocks] | ||
# Compute loss and prediction | ||
batch_pred = model(blocks, batch_inputs) | ||
loss = loss_fcn(batch_pred, pos_graph, neg_graph) | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
# Training loop | ||
avg = 0 | ||
iter_tput = [] | ||
t0 = time.time() | ||
for epoch in range(num_epochs): | ||
for step, (input_nodes, pos_graph, neg_graph, blocks) in enumerate(dataloader): | ||
# Load the input features as well as output labels | ||
#batch_inputs, batch_labels = load_subtensor(g, seeds, input_nodes, device) | ||
batch_inputs = load_subtensor(g, input_nodes, device) | ||
|
||
pos_graph = pos_graph.to(device) | ||
neg_graph = neg_graph.to(device) | ||
blocks = [block.int().to(device) for block in blocks] | ||
# Compute loss and prediction | ||
batch_pred = model(blocks, batch_inputs) | ||
loss = loss_fcn(batch_pred, pos_graph, neg_graph) | ||
optimizer.zero_grad() | ||
loss.backward() | ||
optimizer.step() | ||
|
||
t1 = time.time() | ||
|
||
return t1 - t0 |
Oops, something went wrong.