Skip to content

Commit

Permalink
prototype
Browse files Browse the repository at this point in the history
  • Loading branch information
s0md3v authored Jun 17, 2023
1 parent a0239a5 commit b0d56aa
Show file tree
Hide file tree
Showing 10 changed files with 563 additions and 0 deletions.
43 changes: 43 additions & 0 deletions README.md
Original file line number Diff line number Diff line change
@@ -0,0 +1,43 @@
# roop for StableDiffusion

This is an extension for StableDiffusion's [AUTOMATIC1111 web-ui](https://github.com/AUTOMATIC1111/stable-diffusion-webui/) that allows face-replacement in images. It is based on [roop](https://github.com/s0md3v/roop) but will be developed seperately.

![example](example/example.png)

### Disclaimer

This software is meant to be a productive contribution to the rapidly growing AI-generated media industry. It will help artists with tasks such as animating a custom character or using the character as a model for clothing etc.

The developers of this software are aware of its possible unethical applicaitons and are committed to take preventative measures against them. It has a built-in check which prevents the program from working on inappropriate media including but not limited to nudity, graphic content, sensitive material such as war footage etc. We will continue to develop this project in the positive direction while adhering to law and ethics. This project may be shut down or include watermarks on the output if requested by law.

Users of this software are expected to use this software responsibly while abiding the local law. If face of a real person is being used, users are suggested to get consent from the concerned person and clearly mention that it is a deepfake when posting content online. Developers of this software will not be responsible for actions of end-users.

## Installation

To install the extension, follow these steps:

+ In web-ui, go to the "Extensions" tab and use this URL `https://github.com/s0md3v/roop` in the "install from URL" tab.
+ Download the "inswapper_128.onnx" model from [here](ttps://huggingface.co/henryruhs/roop/resolve/main/inswapper_128.onnx) and put it inside `<web-ui-dir>/extensions/roop/models` directory.

On Windows, Microsoft Visual C++ 14.0 or greater must be installed before installing the extension. [During the install, make sure to include the Python and C++ packages.](https://github.com/s0md3v/roop/issues/153)

## Usage

1. Under "roop" drop-down menu, import an image containing a face.
2. Turn on the "Enable" checkbox
3. That's it, now the generated result will have the face you selected

### The result face is blurry
Use the "Restore Face" option. You can also try the "Upscaler" option or for more finer control, use an upscaler from the "Extras" tab.

### There are multiple faces in result
Select the face numbers you wish to swap using the "Comma separated face number(s)" option.

### The result is totally black
This means roop detected that your image is NSFW.

### Img2Img

You can choose to activate the swap on the source image or on the generated image, or on both using the checkboxes. Activating on source image allows you to start from a given base and apply the diffusion process to it.

Inpainting should work but only the masked part will be swapped.
Binary file added example/example.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
44 changes: 44 additions & 0 deletions install.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,44 @@
import launch
import os
import pkg_resources
import sys
import traceback

req_file = os.path.join(os.path.dirname(os.path.realpath(__file__)), "requirements.txt")

import os

models_dir = os.path.abspath("models/roop")

if not os.path.exists(models_dir):
os.makedirs(models_dir)
print(f"roop : You can put the model in {models_dir} directory")

print("Check roop requirements")
with open(req_file) as file:
for package in file:
try:
python = sys.executable
package = package.strip()

if not launch.is_installed(package):
print(f"Install {package}")
launch.run_pip(
f"install {package}", f"sd-webui-roop requirement: {package}"
)
elif "==" in package:
package_name, package_version = package.split("==")
installed_version = pkg_resources.get_distribution(package_name).version
if installed_version != package_version:
print(
f"Install {package}, {installed_version} vs {package_version}"
)
launch.run_pip(
f"install {package}",
f"sd-webui-roop requirement: changing {package_name} version from {installed_version} to {package_version}",
)

except Exception as e:
print(e)
print(f"Warning: Failed to install {package}, roop will not work.")
raise e
1 change: 1 addition & 0 deletions models/Put_the_model_here.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1 @@
The model file required is "inswapper_128.onnx".Mirrors are given the roop project [installation guide](https://github.com/s0md3v/roop/wiki/1.-Installation).
6 changes: 6 additions & 0 deletions requirements.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,6 @@
insightface==0.7.3
onnx==1.14.0
onnxruntime==1.15.0
tensorflow==2.12.0
opencv-python==4.7.0.72
diffusers==0.17.1
57 changes: 57 additions & 0 deletions scripts/cimage.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,57 @@
from typing import List, Union, Dict, Set, Tuple

from diffusers.pipelines.stable_diffusion.safety_checker import (
StableDiffusionSafetyChecker,
)
from transformers import AutoFeatureExtractor
import torch
from PIL import Image, ImageFilter
import numpy as np

safety_model_id: str = "CompVis/stable-diffusion-safety-checker"
safety_feature_extractor: AutoFeatureExtractor = None
safety_checker: StableDiffusionSafetyChecker = None


def numpy_to_pil(images: np.ndarray) -> List[Image.Image]:
if images.ndim == 3:
images = images[None, ...]
images = (images * 255).round().astype("uint8")
pil_images = [Image.fromarray(image) for image in images]

return pil_images


def check_image(x_image: np.ndarray) -> Tuple[np.ndarray, List[bool]]:
global safety_feature_extractor, safety_checker

if safety_feature_extractor is None:
safety_feature_extractor = AutoFeatureExtractor.from_pretrained(safety_model_id)
safety_checker = StableDiffusionSafetyChecker.from_pretrained(safety_model_id)

safety_checker_input = safety_feature_extractor(
images=numpy_to_pil(x_image), return_tensors="pt"
)
x_checked_image, hs = safety_checker(
images=x_image, clip_input=safety_checker_input.pixel_values
)

return x_checked_image, hs


def check_batch(x: torch.Tensor) -> torch.Tensor:
x_samples_ddim_numpy = x.cpu().permute(0, 2, 3, 1).numpy()
x_checked_image, _ = check_image(x_samples_ddim_numpy)
x = torch.from_numpy(x_checked_image).permute(0, 3, 1, 2)
return x


def convert_to_sd(img: Image) -> Image:
_, hs = check_image(np.array(img))
if any(hs):
img = (
img.resize((int(img.width * 0.1), int(img.height * 0.1)))
.resize(img.size, Image.BOX)
.filter(ImageFilter.BLUR)
)
return img
199 changes: 199 additions & 0 deletions scripts/faceswap.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,199 @@
import gradio as gr
import modules.scripts as scripts
from modules.upscaler import Upscaler, UpscalerData
from modules import scripts, shared, images, scripts_postprocessing
from modules.processing import (
StableDiffusionProcessing,
StableDiffusionProcessingImg2Img,
)
from modules.shared import cmd_opts, opts, state
from PIL import Image
import glob
from modules.face_restoration import FaceRestoration

from scripts.roop_logging import logger
from scripts.swapper import UpscaleOptions, swap_face, ImageResult
from scripts.cimage import check_batch
from scripts.roop_version import version_flag
import os


def get_models():
models_path = os.path.join(
scripts.basedir(), "extensions/sd-webui-roop/models/*"
)
models = glob.glob(models_path)
models_path = os.path.join(scripts.basedir(), "models/roop/*")
models += glob.glob(models_path)
models = [x for x in models if x.endswith(".onnx") or x.endswith(".pth")]
return models


class FaceSwapScript(scripts.Script):
def title(self):
return f"roop"

def show(self, is_img2img):
return scripts.AlwaysVisible

def ui(self, is_img2img):
with gr.Accordion(f"roop {version_flag}", open=False):
with gr.Column():
img = gr.inputs.Image(type="pil")
enable = gr.Checkbox(False, placeholder="enable", label="Enable")
faces_index = gr.Textbox(
value="0",
placeholder="Which face to swap (comma separated), start from 0",
label="Comma separated face number(s)",
)
with gr.Row():
face_restorer_name = gr.Radio(
label="Restore Face",
choices=["None"] + [x.name() for x in shared.face_restorers],
value=shared.face_restorers[0].name(),
type="value",
)
face_restorer_visibility = gr.Slider(
0, 1, 1, step=0.1, label="Restore visibility"
)
upscaler_name = gr.inputs.Dropdown(
choices=[upscaler.name for upscaler in shared.sd_upscalers],
label="Upscaler",
)
upscaler_scale = gr.Slider(1, 8, 1, step=0.1, label="Upscaler scale")
upscaler_visibility = gr.Slider(
0, 1, 1, step=0.1, label="Upscaler visibility (if scale = 1)"
)

models = get_models()
if len(models) == 0:
logger.warning(
"You should at least have one model in models directory, please read the doc here : https://github.com/s0md3v/sd-webui-roop/"
)
model = gr.inputs.Dropdown(
choices=models,
label="Model not found, please download one and reload automatic 1111",
)
else:
model = gr.inputs.Dropdown(
choices=models, label="Model", default=models[0]
)

swap_in_source = gr.Checkbox(
False,
placeholder="Swap face in source image",
label="Swap in source image",
visible=is_img2img,
)
swap_in_generated = gr.Checkbox(
True,
placeholder="Swap face in generated image",
label="Swap in generated image",
visible=is_img2img,
)

return [
img,
enable,
faces_index,
model,
face_restorer_name,
face_restorer_visibility,
upscaler_name,
upscaler_scale,
upscaler_visibility,
swap_in_source,
swap_in_generated,
]

@property
def upscaler(self) -> UpscalerData:
for upscaler in shared.sd_upscalers:
if upscaler.name == self.upscaler_name:
return upscaler
return None

@property
def face_restorer(self) -> FaceRestoration:
for face_restorer in shared.face_restorers:
if face_restorer.name() == self.face_restorer_name:
return face_restorer
return None

@property
def upscale_options(self) -> UpscaleOptions:
return UpscaleOptions(
scale=self.upscaler_scale,
upscaler=self.upscaler,
face_restorer=self.face_restorer,
upscale_visibility=self.upscaler_visibility,
restorer_visibility=self.face_restorer_visibility,
)

def process(
self,
p: StableDiffusionProcessing,
img,
enable,
faces_index,
model,
face_restorer_name,
face_restorer_visibility,
upscaler_name,
upscaler_scale,
upscaler_visibility,
swap_in_source,
swap_in_generated,
):
self.source = img
self.face_restorer_name = face_restorer_name
self.upscaler_scale = upscaler_scale
self.upscaler_visibility = upscaler_visibility
self.face_restorer_visibility = face_restorer_visibility
self.enable = enable
self.upscaler_name = upscaler_name
self.swap_in_generated = swap_in_generated
self.model = model
self.faces_index = {
int(x) for x in faces_index.strip(",").split(",") if x.isnumeric()
}
if len(self.faces_index) == 0:
self.faces_index = {0}
if self.enable:
if self.source is not None:
if isinstance(p, StableDiffusionProcessingImg2Img) and swap_in_source:
logger.info(f"roop enabled, face index %s", self.faces_index)

for i in range(len(p.init_images)):
logger.info(f"Swap in source %s", i)
result = swap_face(
self.source,
p.init_images[i],
faces_index=self.faces_index,
model=self.model,
upscale_options=self.upscale_options,
)
p.init_images[i] = result.image()
else:
logger.error(f"Please provide a source face")

def postprocess_batch(self, p, *args, **kwargs):
if self.enable:
images = kwargs["images"]
images[:] = check_batch(images)[:]

def postprocess_image(self, p, script_pp: scripts.PostprocessImageArgs, *args):
if self.enable and self.swap_in_generated:
if self.source is not None:
image: Image.Image = script_pp.image
result: ImageResult = swap_face(
self.source,
image,
faces_index=self.faces_index,
model=self.model,
upscale_options=self.upscale_options,
)
pp = scripts_postprocessing.PostprocessedImage(result.image())
pp.info = {}
p.extra_generation_params.update(pp.info)
script_pp.image = pp.image
41 changes: 41 additions & 0 deletions scripts/roop_logging.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,41 @@
import logging
import copy
import sys

from modules import shared


class ColoredFormatter(logging.Formatter):
COLORS = {
"DEBUG": "\033[0;36m", # CYAN
"INFO": "\033[0;32m", # GREEN
"WARNING": "\033[0;33m", # YELLOW
"ERROR": "\033[0;31m", # RED
"CRITICAL": "\033[0;37;41m", # WHITE ON RED
"RESET": "\033[0m", # RESET COLOR
}

def format(self, record):
colored_record = copy.copy(record)
levelname = colored_record.levelname
seq = self.COLORS.get(levelname, self.COLORS["RESET"])
colored_record.levelname = f"{seq}{levelname}{self.COLORS['RESET']}"
return super().format(colored_record)


# Create a new logger
logger = logging.getLogger("roop")
logger.propagate = False

# Add handler if we don't have one.
if not logger.handlers:
handler = logging.StreamHandler(sys.stdout)
handler.setFormatter(
ColoredFormatter("%(asctime)s - %(name)s - %(levelname)s - %(message)s")
)
logger.addHandler(handler)

# Configure logger
loglevel_string = getattr(shared.cmd_opts, "controlnet_loglevel", "INFO")
loglevel = getattr(logging, loglevel_string.upper(), "info")
logger.setLevel(loglevel)
Loading

0 comments on commit b0d56aa

Please sign in to comment.