Skip to content

junhkim1226/TADF-DL

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

34 Commits
 
 
 
 
 
 

Repository files navigation

TADF-DL

Github repository of Effect of molecular representation on deep learning performance for prediction of molecular electronic properties by Jun Hyeong Kim, Hyeonsu Kim, Woo Youn Kim.

Table of Contents

Environmental

Data

Preprocessing

Move to data/preprocessing/. Run extract.py to get aromatic ring dataset.

We used the PubChem database included up to CID 139598315.

Dataset

Our dataset is available in data/ directory.

Basic data structure is shown below

ID    SMILES    HOMO    LUMO    E(S1)   E(T1)

For example,

id1   c1ccccc1    -5.6    -1.6    2.6   2.4
id2   Cc1ccccc1    -5.5    -1.5    2.7   2.3
...

Data file should be in src/model_directory/data/. Then, run dataset_divide.py to split dataset into training set and validation set, test set.

Train

There are 4 models for predict TADF-related properties in src/. Move to src/model_directory/train/(e.g. src/GCN/train/)

Run jobsctript_train.x

Train script is shown below.

python -u ../script/train.py \
--num_workers $NUM_WORKERS \
--batch_size $BATCH_SIZE \
--num_epochs $EPOCH \
--lr $LR \
--lr_decay $LR_DECAY \
--save_every $SAVE_PER_EPOCH \
--hidden_dim $HIDDEN_DIM \
--N_GCN_layer $N_GCN_LAYER \
--N_predictor_layer $N_PREDICTOR_LAYER \
--N_properties $N_PROPERTIES \
--dropout $DROPOUT 1> ./results/log.txt

An explanation of the options can be found in src/model_directory/script/train.py.

or

Run python src/model_directory/script/train.py --help.

You can check train loss and validation loss in scr/model_directory/train/result/log.txt.

Test

Run jobsctript_test.x

Test script is shown below.

python -u ../script/test.py \
--batch_size $BATCH_SIZE \
--test_file $TEST_FILE \
--restart_file $RESTART_FILE \
--hidden_dim $HIDDEN_DIM \
--N_GCN_layer $N_GCN_LAYER \
--N_predictor_layer $N_PREDICTOR_LAYER \
--N_properties $N_PROPERTIES \
--dropout $DROPOUT

An explanation of the options can be found in src/model_directory/script/test.py.

or

Run python src/model_directory/script/test.py --help.

You can check test loss in scr/model_directory/train/test_results.txt.

AGGNN

AGGNN code is available in https://github.com/edvardlindelof/graph-neural-networks-for-drug-discovery

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages