forked from intel/caffe
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request #2089 from jeffdonahue/reduction-layer
ReductionLayer
- Loading branch information
Showing
5 changed files
with
599 additions
and
1 deletion.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,132 @@ | ||
#include <algorithm> | ||
#include <cfloat> | ||
#include <vector> | ||
|
||
#include "caffe/layer.hpp" | ||
#include "caffe/util/math_functions.hpp" | ||
#include "caffe/vision_layers.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
void ReductionLayer<Dtype>::LayerSetUp(const vector<Blob<Dtype>*>& bottom, | ||
const vector<Blob<Dtype>*>& top) { | ||
op_ = this->layer_param_.reduction_param().operation(); | ||
} | ||
|
||
template <typename Dtype> | ||
void ReductionLayer<Dtype>::Reshape(const vector<Blob<Dtype>*>& bottom, | ||
const vector<Blob<Dtype>*>& top) { | ||
axis_ = bottom[0]->CanonicalAxisIndex( | ||
this->layer_param_.reduction_param().axis()); | ||
// In the output, we'll keep all axes up to the reduction axis, but | ||
// throw away any after that. | ||
// Note: currently reducing along non-tail axes is not supported; otherwise, | ||
// we'd need to also copy any axes following an "end_axis". | ||
vector<int> top_shape(bottom[0]->shape().begin(), | ||
bottom[0]->shape().begin() + axis_); | ||
top[0]->Reshape(top_shape); | ||
num_ = bottom[0]->count(0, axis_); | ||
dim_ = bottom[0]->count(axis_); | ||
CHECK_EQ(num_, top[0]->count()); | ||
if (op_ == ReductionParameter_ReductionOp_SUM || | ||
op_ == ReductionParameter_ReductionOp_MEAN) { | ||
vector<int> sum_mult_shape(1, dim_); | ||
sum_multiplier_.Reshape(sum_mult_shape); | ||
caffe_set(dim_, Dtype(1), sum_multiplier_.mutable_cpu_data()); | ||
} | ||
coeff_ = this->layer_param().reduction_param().coeff(); | ||
if (op_ == ReductionParameter_ReductionOp_MEAN) { | ||
coeff_ /= dim_; | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void ReductionLayer<Dtype>::Forward_cpu( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
const Dtype* bottom_data = bottom[0]->cpu_data(); | ||
const Dtype* mult_data = NULL; | ||
if (sum_multiplier_.count() > 0) { | ||
mult_data = sum_multiplier_.cpu_data(); | ||
} | ||
Dtype* top_data = top[0]->mutable_cpu_data(); | ||
for (int i = 0; i < num_; ++i) { | ||
switch (op_) { | ||
case ReductionParameter_ReductionOp_SUM: | ||
case ReductionParameter_ReductionOp_MEAN: | ||
*top_data = caffe_cpu_dot(dim_, mult_data, bottom_data); | ||
break; | ||
case ReductionParameter_ReductionOp_ASUM: | ||
*top_data = caffe_cpu_asum(dim_, bottom_data); | ||
break; | ||
case ReductionParameter_ReductionOp_SUMSQ: | ||
*top_data = caffe_cpu_dot(dim_, bottom_data, bottom_data); | ||
break; | ||
default: | ||
LOG(FATAL) << "Unknown reduction op: " | ||
<< ReductionParameter_ReductionOp_Name(op_); | ||
} | ||
bottom_data += dim_; | ||
++top_data; | ||
} | ||
if (coeff_ != Dtype(1)) { | ||
// Reset the top_data pointer. | ||
top_data = top[0]->mutable_cpu_data(); | ||
caffe_scal(num_, coeff_, top_data); | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void ReductionLayer<Dtype>::Backward_cpu(const vector<Blob<Dtype>*>& top, | ||
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { | ||
if (!propagate_down[0]) { return; } | ||
// Get bottom_data, if needed. | ||
const Dtype* bottom_data = NULL; | ||
switch (op_) { | ||
// Operations that don't need bottom_data | ||
case ReductionParameter_ReductionOp_SUM: | ||
case ReductionParameter_ReductionOp_MEAN: | ||
break; | ||
// Operations that need bottom_data | ||
case ReductionParameter_ReductionOp_ASUM: | ||
case ReductionParameter_ReductionOp_SUMSQ: | ||
bottom_data = bottom[0]->cpu_data(); | ||
break; | ||
default: | ||
LOG(FATAL) << "Unknown reduction op: " | ||
<< ReductionParameter_ReductionOp_Name(op_); | ||
} | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
Dtype* bottom_diff = bottom[0]->mutable_cpu_diff(); | ||
for (int i = 0; i < num_; ++i) { | ||
const Dtype bottom_coeff = (*top_diff) * coeff_; | ||
switch (op_) { | ||
case ReductionParameter_ReductionOp_SUM: | ||
case ReductionParameter_ReductionOp_MEAN: | ||
caffe_set(dim_, bottom_coeff, bottom_diff); | ||
break; | ||
case ReductionParameter_ReductionOp_ASUM: | ||
caffe_cpu_sign(dim_, bottom_data, bottom_diff); | ||
caffe_scal(dim_, bottom_coeff, bottom_diff); | ||
break; | ||
case ReductionParameter_ReductionOp_SUMSQ: | ||
caffe_cpu_scale(dim_, 2 * bottom_coeff, bottom_data, bottom_diff); | ||
break; | ||
default: | ||
LOG(FATAL) << "Unknown reduction op: " | ||
<< ReductionParameter_ReductionOp_Name(op_); | ||
} | ||
bottom_data += dim_; | ||
bottom_diff += dim_; | ||
++top_diff; | ||
} | ||
} | ||
|
||
#ifdef CPU_ONLY | ||
STUB_GPU(ReductionLayer); | ||
#endif | ||
|
||
INSTANTIATE_CLASS(ReductionLayer); | ||
REGISTER_LAYER_CLASS(Reduction); | ||
|
||
} // namespace caffe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,93 @@ | ||
#include <cfloat> | ||
#include <vector> | ||
|
||
#include "caffe/layer.hpp" | ||
#include "caffe/util/math_functions.hpp" | ||
#include "caffe/vision_layers.hpp" | ||
|
||
namespace caffe { | ||
|
||
template <typename Dtype> | ||
void ReductionLayer<Dtype>::Forward_gpu( | ||
const vector<Blob<Dtype>*>& bottom, const vector<Blob<Dtype>*>& top) { | ||
const Dtype* bottom_data = bottom[0]->gpu_data(); | ||
const Dtype* mult_data = NULL; | ||
if (sum_multiplier_.count() > 0) { | ||
mult_data = sum_multiplier_.gpu_data(); | ||
} | ||
Dtype* top_data = top[0]->mutable_cpu_data(); | ||
for (int i = 0; i < num_; ++i) { | ||
switch (op_) { | ||
case ReductionParameter_ReductionOp_SUM: | ||
case ReductionParameter_ReductionOp_MEAN: | ||
caffe_gpu_dot(dim_, mult_data, bottom_data, top_data); | ||
break; | ||
case ReductionParameter_ReductionOp_ASUM: | ||
caffe_gpu_asum(dim_, bottom_data, top_data); | ||
break; | ||
case ReductionParameter_ReductionOp_SUMSQ: | ||
caffe_gpu_dot(dim_, bottom_data, bottom_data, top_data); | ||
break; | ||
default: | ||
LOG(FATAL) << "Unknown reduction op: " | ||
<< ReductionParameter_ReductionOp_Name(op_); | ||
} | ||
bottom_data += dim_; | ||
++top_data; | ||
} | ||
if (coeff_ != Dtype(1)) { | ||
// Reset the top_data pointer. | ||
top_data = top[0]->mutable_gpu_data(); | ||
caffe_gpu_scal(num_, coeff_, top_data); | ||
} | ||
} | ||
|
||
template <typename Dtype> | ||
void ReductionLayer<Dtype>::Backward_gpu(const vector<Blob<Dtype>*>& top, | ||
const vector<bool>& propagate_down, const vector<Blob<Dtype>*>& bottom) { | ||
if (!propagate_down[0]) { return; } | ||
// Get bottom_data, if needed. | ||
const Dtype* bottom_data = NULL; | ||
switch (op_) { | ||
// Operations that don't need bottom_data | ||
case ReductionParameter_ReductionOp_SUM: | ||
case ReductionParameter_ReductionOp_MEAN: | ||
break; | ||
// Operations that need bottom_data | ||
case ReductionParameter_ReductionOp_ASUM: | ||
case ReductionParameter_ReductionOp_SUMSQ: | ||
bottom_data = bottom[0]->gpu_data(); | ||
break; | ||
default: | ||
LOG(FATAL) << "Unknown reduction op: " | ||
<< ReductionParameter_ReductionOp_Name(op_); | ||
} | ||
const Dtype* top_diff = top[0]->cpu_diff(); | ||
Dtype* bottom_diff = bottom[0]->mutable_gpu_diff(); | ||
for (int i = 0; i < num_; ++i) { | ||
const Dtype bottom_coeff = (*top_diff) * coeff_; | ||
switch (op_) { | ||
case ReductionParameter_ReductionOp_SUM: | ||
case ReductionParameter_ReductionOp_MEAN: | ||
caffe_gpu_set(dim_, bottom_coeff, bottom_diff); | ||
break; | ||
case ReductionParameter_ReductionOp_ASUM: | ||
caffe_gpu_sign(dim_, bottom_data, bottom_diff); | ||
caffe_gpu_scal(dim_, bottom_coeff, bottom_diff); | ||
break; | ||
case ReductionParameter_ReductionOp_SUMSQ: | ||
caffe_gpu_scale(dim_, 2 * bottom_coeff, bottom_data, bottom_diff); | ||
break; | ||
default: | ||
LOG(FATAL) << "Unknown reduction op: " | ||
<< ReductionParameter_ReductionOp_Name(op_); | ||
} | ||
bottom_data += dim_; | ||
bottom_diff += dim_; | ||
++top_diff; | ||
} | ||
} | ||
|
||
INSTANTIATE_LAYER_GPU_FUNCS(ReductionLayer); | ||
|
||
} // namespace caffe |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.