forked from koz4k/dni-pytorch
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
4 changed files
with
228 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
BSD 3-Clause License | ||
|
||
Copyright (c) 2017, | ||
All rights reserved. | ||
|
||
Redistribution and use in source and binary forms, with or without | ||
modification, are permitted provided that the following conditions are met: | ||
|
||
* Redistributions of source code must retain the above copyright notice, this | ||
list of conditions and the following disclaimer. | ||
|
||
* Redistributions in binary form must reproduce the above copyright notice, | ||
this list of conditions and the following disclaimer in the documentation | ||
and/or other materials provided with the distribution. | ||
|
||
* Neither the name of the copyright holder nor the names of its | ||
contributors may be used to endorse or promote products derived from | ||
this software without specific prior written permission. | ||
|
||
THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" | ||
AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE | ||
IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE | ||
DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE | ||
FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL | ||
DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR | ||
SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER | ||
CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, | ||
OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE | ||
OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,29 @@ | ||
MNIST with CNN | ||
-------------- | ||
|
||
This example illustrates how to implement a custom ``Synthesizer``. | ||
Code is mostly copied from the official PyTorch MNIST example: | ||
https://github.com/pytorch/examples/blob/master/mnist/main.py | ||
|
||
Classification model is the same as in the original example (a CNN) with | ||
batch normalization added on every layer and DNI inserted between the last | ||
convolutional layer and the first fully-connected layer (before activation). | ||
|
||
Synthesizer used is a CNN with three convolutional layers with padding, so | ||
that sizes of the feature maps are kept constant, and ReLU activation function. | ||
|
||
To install requirements:: | ||
|
||
$ pip install -r requirements.txt | ||
|
||
To train with regular backpropagation:: | ||
|
||
$ python main.py | ||
|
||
To train with DNI (no label conditioning):: | ||
|
||
$ python main.py --dni | ||
|
||
To train with cDNI (label conditioning):: | ||
|
||
$ python main.py --dni --context |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,167 @@ | ||
from __future__ import print_function | ||
import argparse | ||
import torch | ||
import torch.nn as nn | ||
import torch.nn.functional as F | ||
import torch.optim as optim | ||
from torchvision import datasets, transforms | ||
from torch.autograd import Variable | ||
import dni | ||
|
||
# Training settings | ||
parser = argparse.ArgumentParser(description='PyTorch MNIST Example') | ||
parser.add_argument('--batch-size', type=int, default=64, metavar='N', | ||
help='input batch size for training (default: 64)') | ||
parser.add_argument('--test-batch-size', type=int, default=1000, metavar='N', | ||
help='input batch size for testing (default: 1000)') | ||
parser.add_argument('--epochs', type=int, default=10, metavar='N', | ||
help='number of epochs to train (default: 10)') | ||
parser.add_argument('--lr', type=float, default=0.001, metavar='LR', | ||
help='learning rate (default: 0.001)') | ||
parser.add_argument('--no-cuda', action='store_true', default=False, | ||
help='disables CUDA training') | ||
parser.add_argument('--seed', type=int, default=1, metavar='S', | ||
help='random seed (default: 1)') | ||
parser.add_argument('--log-interval', type=int, default=10, metavar='N', | ||
help='how many batches to wait before logging training status') | ||
parser.add_argument('--dni', action='store_true', default=False, | ||
help='enable DNI') | ||
parser.add_argument('--context', action='store_true', default=False, | ||
help='enable context (label conditioning) in DNI') | ||
args = parser.parse_args() | ||
args.cuda = not args.no_cuda and torch.cuda.is_available() | ||
|
||
torch.manual_seed(args.seed) | ||
if args.cuda: | ||
torch.cuda.manual_seed(args.seed) | ||
|
||
|
||
kwargs = {'num_workers': 1, 'pin_memory': True} if args.cuda else {} | ||
train_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=True, download=True, | ||
transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.batch_size, shuffle=True, **kwargs) | ||
test_loader = torch.utils.data.DataLoader( | ||
datasets.MNIST('../data', train=False, transform=transforms.Compose([ | ||
transforms.ToTensor(), | ||
transforms.Normalize((0.1307,), (0.3081,)) | ||
])), | ||
batch_size=args.test_batch_size, shuffle=True, **kwargs) | ||
|
||
|
||
def one_hot(indexes, n_classes): | ||
result = torch.FloatTensor(indexes.size() + (n_classes,)) | ||
if args.cuda: | ||
result = result.cuda() | ||
result.zero_() | ||
indexes_rank = len(indexes.size()) | ||
result.scatter_( | ||
dim=indexes_rank, | ||
index=indexes.data.unsqueeze(dim=indexes_rank), | ||
value=1 | ||
) | ||
return Variable(result) | ||
|
||
|
||
class Net(nn.Module): | ||
def __init__(self): | ||
super(Net, self).__init__() | ||
self.conv1 = nn.Conv2d(1, 10, kernel_size=5) | ||
self.conv1_bn = nn.BatchNorm2d(10) | ||
self.conv2 = nn.Conv2d(10, 20, kernel_size=5) | ||
self.conv2_bn = nn.BatchNorm2d(20) | ||
self.conv2_drop = nn.Dropout2d() | ||
if args.dni: | ||
self.backward_interface = dni.BackwardInterface(ConvSynthesizer()) | ||
self.fc1 = nn.Linear(320, 50) | ||
self.fc1_bn = nn.BatchNorm1d(50) | ||
self.fc2 = nn.Linear(50, 10) | ||
self.fc2_bn = nn.BatchNorm1d(10) | ||
|
||
def forward(self, x, y=None): | ||
x = F.relu(F.max_pool2d(self.conv1_bn(self.conv1(x)), 2)) | ||
x = F.max_pool2d(self.conv2_drop(self.conv2_bn(self.conv2(x))), 2) | ||
if args.dni and self.training: | ||
if args.context: | ||
context = one_hot(y, 10) | ||
else: | ||
context = None | ||
with dni.synthesizer_context(context): | ||
x = self.backward_interface(x) | ||
x = F.relu(x) | ||
x = x.view(-1, 320) | ||
x = F.relu(self.fc1_bn(self.fc1(x))) | ||
x = F.dropout(x, training=self.training) | ||
x = self.fc2_bn(self.fc2(x)) | ||
return F.log_softmax(x) | ||
|
||
|
||
class ConvSynthesizer(nn.Module): | ||
def __init__(self): | ||
super(ConvSynthesizer, self).__init__() | ||
self.input_trigger = nn.Conv2d(20, 20, kernel_size=5, padding=2) | ||
self.input_context = nn.Linear(10, 20) | ||
self.hidden = nn.Conv2d(20, 20, kernel_size=5, padding=2) | ||
self.output = nn.Conv2d(20, 20, kernel_size=5, padding=2) | ||
# zero-initialize the last layer, as in the paper | ||
nn.init.constant(self.output.weight, 0) | ||
|
||
def forward(self, trigger, context): | ||
x = self.input_trigger(trigger) | ||
if context is not None: | ||
x += ( | ||
self.input_context(context).unsqueeze(2) | ||
.unsqueeze(3) | ||
.expand_as(x) | ||
) | ||
x = self.hidden(F.relu(x)) | ||
return self.output(F.relu(x)) | ||
|
||
|
||
model = Net() | ||
if args.cuda: | ||
model.cuda() | ||
|
||
optimizer = optim.Adam(model.parameters(), lr=args.lr) | ||
|
||
def train(epoch): | ||
model.train() | ||
for batch_idx, (data, target) in enumerate(train_loader): | ||
if args.cuda: | ||
data, target = data.cuda(), target.cuda() | ||
data, target = Variable(data), Variable(target) | ||
optimizer.zero_grad() | ||
output = model(data, target) | ||
loss = F.nll_loss(output, target) | ||
loss.backward() | ||
optimizer.step() | ||
if batch_idx % args.log_interval == 0: | ||
print('Train Epoch: {} [{}/{} ({:.0f}%)]\tLoss: {:.6f}'.format( | ||
epoch, batch_idx * len(data), len(train_loader.dataset), | ||
100. * batch_idx / len(train_loader), loss.data[0])) | ||
|
||
def test(): | ||
model.eval() | ||
test_loss = 0 | ||
correct = 0 | ||
for data, target in test_loader: | ||
if args.cuda: | ||
data, target = data.cuda(), target.cuda() | ||
data, target = Variable(data, volatile=True), Variable(target) | ||
output = model(data) | ||
test_loss += F.nll_loss(output, target, size_average=False).data[0] # sum up batch loss | ||
pred = output.data.max(1, keepdim=True)[1] # get the index of the max log-probability | ||
correct += pred.eq(target.data.view_as(pred)).cpu().sum() | ||
|
||
test_loss /= len(test_loader.dataset) | ||
print('\nTest set: Average loss: {:.4f}, Accuracy: {}/{} ({:.0f}%)\n'.format( | ||
test_loss, correct, len(test_loader.dataset), | ||
100. * correct / len(test_loader.dataset))) | ||
|
||
|
||
for epoch in range(1, args.epochs + 1): | ||
train(epoch) | ||
test() |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,3 @@ | ||
git+git://github.com/koz4k/dni-pytorch.git#egg=dni-pytorch | ||
torch | ||
torchvision |