forked from bojone/vae
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
Showing
1 changed file
with
104 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,104 @@ | ||
#! -*- coding: utf-8 -*- | ||
# vMF-VAE简单实现参考 | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
from keras.layers import Input, Dense, Lambda | ||
from keras.models import Model | ||
from keras import backend as K | ||
from keras.datasets import mnist | ||
|
||
# 基本参数 | ||
batch_size = 100 | ||
original_dim = 784 | ||
latent_dim = 8 | ||
intermediate_dim = 256 | ||
epochs = 50 | ||
kappa = 20 | ||
|
||
# 加载数据集 | ||
(x_train, y_train_), (x_test, y_test_) = mnist.load_data() | ||
x_train = x_train.astype('float32') / 255. | ||
x_test = x_test.astype('float32') / 255. | ||
x_train = x_train.reshape((len(x_train), np.prod(x_train.shape[1:]))) | ||
x_test = x_test.reshape((len(x_test), np.prod(x_test.shape[1:]))) | ||
|
||
# 模型定义 | ||
x = Input(shape=(original_dim,)) | ||
h = Dense(intermediate_dim, activation='relu')(x) | ||
|
||
# 参数mu | ||
mu = Dense(latent_dim)(h) | ||
mu = Lambda(K.l2_normalize)(mu) | ||
|
||
|
||
def sampling(mu): | ||
"""vMF分布重参数操作 | ||
""" | ||
dims = K.int_shape(mu)[-1] | ||
# 预先计算一批w | ||
epsilon = 1e-7 | ||
x = np.arange(-1 + epsilon, 1, epsilon) | ||
y = kappa * x + np.log(1 - x**2) * (dims - 3) / 2 | ||
y = np.cumsum(np.exp(y - y.max())) | ||
y = y / y[-1] | ||
W = K.constant(np.interp(np.random.random(10**6), y, x)) | ||
# 实时采样w | ||
idx = K.random_uniform(K.shape(mu[:, :1]), 0, 10**6, dtype='int32') | ||
w = K.gather(W, idx) | ||
# 实时采样z | ||
eps = K.random_normal(K.shape(mu)) | ||
nu = eps - K.sum(eps * mu, axis=1, keepdims=True) * mu | ||
nu = K.l2_normalize(nu) | ||
return w * mu + (1 - w**2)**0.5 * nu | ||
|
||
|
||
# 重参数层 | ||
z = Lambda(sampling)(mu) | ||
|
||
# 解码层 | ||
decoder_h = Dense(intermediate_dim, activation='relu') | ||
decoder_mean = Dense(original_dim, activation='sigmoid') | ||
h_decoded = decoder_h(z) | ||
x_decoded_mean = decoder_mean(h_decoded) | ||
|
||
# 建立模型 | ||
vae = Model(x, x_decoded_mean) | ||
|
||
loss = K.sum(K.binary_crossentropy(x, x_decoded_mean), axis=-1) | ||
vae.add_loss(K.mean(loss)) | ||
vae.compile(optimizer='adam') | ||
vae.summary() | ||
|
||
vae.fit( | ||
x_train, | ||
shuffle=True, | ||
epochs=epochs, | ||
batch_size=batch_size, | ||
validation_data=(x_test, None) | ||
) | ||
|
||
# 构建生成器 | ||
decoder_input = Input(shape=(latent_dim,)) | ||
_h_decoded = decoder_h(decoder_input) | ||
_x_decoded_mean = decoder_mean(_h_decoded) | ||
generator = Model(decoder_input, _x_decoded_mean) | ||
|
||
# 观察随机采样结果 | ||
n = 15 | ||
digit_size = 28 | ||
figure = np.zeros((digit_size * n, digit_size * n)) | ||
|
||
# 球面上均匀采样 | ||
for i in range(n): | ||
for j in range(n): | ||
z_sample = np.random.randn(1, latent_dim) | ||
z_sample /= (z_sample**2).sum()**0.5 | ||
x_decoded = generator.predict(z_sample) | ||
digit = x_decoded[0].reshape(digit_size, digit_size) | ||
figure[i * digit_size:(i + 1) * digit_size, | ||
j * digit_size:(j + 1) * digit_size] = digit | ||
|
||
plt.figure(figsize=(10, 10)) | ||
plt.imshow(figure, cmap='Greys_r') | ||
plt.savefig('test.png') |