Skip to content

keepgallop/DCTNet

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

4 Commits
 
 
 
 
 
 
 
 

Repository files navigation

Learning in the Frequency Domain

Highlights

  • We propose a method of learning in the frequency domain (using DCT coefficients as input), which requires little modification to the existing CNN models that take RGB input.
  • We show that learning in the frequency domain better preserves image information in the pre-processing stage than the conventional spatial downsampling approach.
  • We propose a learning-based dynamic channel selection method to identify the trivial frequency components for static removal during inference. Experiment results on ResNet-50 show that one can prune up to $87.5%$ of the frequency channels using the proposed channel selection method with no or little accuracy degradation in the ImageNet classification task.
  • To the best of our knowledge, this is the first work that explores learning in the frequency domain for high-level vision tasks, such as object detection and instance segmentation.

Please refer to the image classfication and instance segmentation sections for more details.

About

No description, website, or topics provided.

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 88.8%
  • Cuda 7.3%
  • C++ 3.7%
  • Other 0.2%