Skip to content

Commit

Permalink
Split applications and preprocessing modules. (keras-team#10339)
Browse files Browse the repository at this point in the history
* Split `applications` and `preprocessing` modules.

* Fix dependencies.
  • Loading branch information
fchollet authored Jun 2, 2018
1 parent a366424 commit c9cb608
Show file tree
Hide file tree
Showing 17 changed files with 111 additions and 6,079 deletions.
1 change: 1 addition & 0 deletions .travis.yml
Original file line number Diff line number Diff line change
Expand Up @@ -41,6 +41,7 @@ install:
- conda create -q -n test-environment python=$TRAVIS_PYTHON_VERSION pytest pandas
- source activate test-environment
- pip install --only-binary=numpy,scipy numpy nose scipy matplotlib h5py theano
- pip install keras_applications keras_preprocessing
- conda install mkl mkl-service

# set library path
Expand Down
19 changes: 19 additions & 0 deletions keras/applications/__init__.py
Original file line number Diff line number Diff line change
@@ -1,3 +1,22 @@
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

from .. import backend
from .. import engine
from .. import layers
from .. import models
from .. import utils

import keras_applications

keras_applications.set_keras_submodules(
backend=backend,
engine=engine,
layers=layers,
models=models,
utils=utils)

from .vgg16 import VGG16
from .vgg19 import VGG19
from .resnet50 import ResNet50
Expand Down
336 changes: 6 additions & 330 deletions keras/applications/densenet.py
Original file line number Diff line number Diff line change
@@ -1,335 +1,11 @@
# -*- coding: utf-8 -*-
"""DenseNet models for Keras.
# Reference paper
- [Densely Connected Convolutional Networks]
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award)
# Reference implementation
- [Torch DenseNets]
(https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua)
- [TensorNets]
(https://github.com/taehoonlee/tensornets/blob/master/tensornets/densenets.py)
"""
from __future__ import absolute_import
from __future__ import division
from __future__ import print_function

import os

from .. import backend as K
from ..models import Model
from ..layers import Activation
from ..layers import AveragePooling2D
from ..layers import BatchNormalization
from ..layers import Concatenate
from ..layers import Conv2D
from ..layers import Dense
from ..layers import GlobalAveragePooling2D
from ..layers import GlobalMaxPooling2D
from ..layers import Input
from ..layers import MaxPooling2D
from ..layers import ZeroPadding2D
from ..utils.data_utils import get_file
from ..engine import get_source_inputs
from . import imagenet_utils
from .imagenet_utils import decode_predictions
from .imagenet_utils import _obtain_input_shape


DENSENET121_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet121_weights_tf_dim_ordering_tf_kernels.h5'
DENSENET121_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5'
DENSENET169_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet169_weights_tf_dim_ordering_tf_kernels.h5'
DENSENET169_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5'
DENSENET201_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet201_weights_tf_dim_ordering_tf_kernels.h5'
DENSENET201_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5'


def dense_block(x, blocks, name):
"""A dense block.
# Arguments
x: input tensor.
blocks: integer, the number of building blocks.
name: string, block label.
# Returns
output tensor for the block.
"""
for i in range(blocks):
x = conv_block(x, 32, name=name + '_block' + str(i + 1))
return x


def transition_block(x, reduction, name):
"""A transition block.
# Arguments
x: input tensor.
reduction: float, compression rate at transition layers.
name: string, block label.
# Returns
output tensor for the block.
"""
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_bn')(x)
x = Activation('relu', name=name + '_relu')(x)
x = Conv2D(int(K.int_shape(x)[bn_axis] * reduction), 1, use_bias=False,
name=name + '_conv')(x)
x = AveragePooling2D(2, strides=2, name=name + '_pool')(x)
return x


def conv_block(x, growth_rate, name):
"""A building block for a dense block.
# Arguments
x: input tensor.
growth_rate: float, growth rate at dense layers.
name: string, block label.
# Returns
output tensor for the block.
"""
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1
x1 = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_0_bn')(x)
x1 = Activation('relu', name=name + '_0_relu')(x1)
x1 = Conv2D(4 * growth_rate, 1, use_bias=False,
name=name + '_1_conv')(x1)
x1 = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name=name + '_1_bn')(x1)
x1 = Activation('relu', name=name + '_1_relu')(x1)
x1 = Conv2D(growth_rate, 3, padding='same', use_bias=False,
name=name + '_2_conv')(x1)
x = Concatenate(axis=bn_axis, name=name + '_concat')([x, x1])
return x


def DenseNet(blocks,
include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000):
"""Instantiates the DenseNet architecture.
Optionally loads weights pre-trained on ImageNet.
Note that the data format convention used by the model is
the one specified in your Keras config at `~/.keras/keras.json`.
When using TensorFlow, for best performance you should
set `"image_data_format": "channels_last"` in the config.
# Arguments
blocks: numbers of building blocks for the four dense layers.
include_top: whether to include the fully-connected
layer at the top of the network.
weights: one of `None` (random initialization),
'imagenet' (pre-training on ImageNet),
or the path to the weights file to be loaded.
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`)
to use as image input for the model.
input_shape: optional shape tuple, only to be specified
if `include_top` is False (otherwise the input shape
has to be `(224, 224, 3)` (with `channels_last` data format)
or `(3, 224, 224)` (with `channels_first` data format).
It should have exactly 3 inputs channels.
pooling: optional pooling mode for feature extraction
when `include_top` is `False`.
- `None` means that the output of the model will be
the 4D tensor output of the
last convolutional layer.
- `avg` means that global average pooling
will be applied to the output of the
last convolutional layer, and thus
the output of the model will be a 2D tensor.
- `max` means that global max pooling will
be applied.
classes: optional number of classes to classify images
into, only to be specified if `include_top` is True, and
if no `weights` argument is specified.
# Returns
A Keras model instance.
# Raises
ValueError: in case of invalid argument for `weights`,
or invalid input shape.
"""
if not (weights in {'imagenet', None} or os.path.exists(weights)):
raise ValueError('The `weights` argument should be either '
'`None` (random initialization), `imagenet` '
'(pre-training on ImageNet), '
'or the path to the weights file to be loaded.')

if weights == 'imagenet' and include_top and classes != 1000:
raise ValueError('If using `weights` as imagenet with `include_top`'
' as true, `classes` should be 1000')

# Determine proper input shape
input_shape = _obtain_input_shape(input_shape,
default_size=224,
min_size=221,
data_format=K.image_data_format(),
require_flatten=include_top,
weights=weights)

if input_tensor is None:
img_input = Input(shape=input_shape)
else:
if not K.is_keras_tensor(input_tensor):
img_input = Input(tensor=input_tensor, shape=input_shape)
else:
img_input = input_tensor

bn_axis = 3 if K.image_data_format() == 'channels_last' else 1

x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input)
x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x)
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name='conv1/bn')(x)
x = Activation('relu', name='conv1/relu')(x)
x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x)
x = MaxPooling2D(3, strides=2, name='pool1')(x)

x = dense_block(x, blocks[0], name='conv2')
x = transition_block(x, 0.5, name='pool2')
x = dense_block(x, blocks[1], name='conv3')
x = transition_block(x, 0.5, name='pool3')
x = dense_block(x, blocks[2], name='conv4')
x = transition_block(x, 0.5, name='pool4')
x = dense_block(x, blocks[3], name='conv5')

x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5,
name='bn')(x)

if include_top:
x = GlobalAveragePooling2D(name='avg_pool')(x)
x = Dense(classes, activation='softmax', name='fc1000')(x)
else:
if pooling == 'avg':
x = GlobalAveragePooling2D(name='avg_pool')(x)
elif pooling == 'max':
x = GlobalMaxPooling2D(name='max_pool')(x)

# Ensure that the model takes into account
# any potential predecessors of `input_tensor`.
if input_tensor is not None:
inputs = get_source_inputs(input_tensor)
else:
inputs = img_input

# Create model.
if blocks == [6, 12, 24, 16]:
model = Model(inputs, x, name='densenet121')
elif blocks == [6, 12, 32, 32]:
model = Model(inputs, x, name='densenet169')
elif blocks == [6, 12, 48, 32]:
model = Model(inputs, x, name='densenet201')
else:
model = Model(inputs, x, name='densenet')

# Load weights.
if weights == 'imagenet':
if include_top:
if blocks == [6, 12, 24, 16]:
weights_path = get_file(
'densenet121_weights_tf_dim_ordering_tf_kernels.h5',
DENSENET121_WEIGHT_PATH,
cache_subdir='models',
file_hash='0962ca643bae20f9b6771cb844dca3b0')
elif blocks == [6, 12, 32, 32]:
weights_path = get_file(
'densenet169_weights_tf_dim_ordering_tf_kernels.h5',
DENSENET169_WEIGHT_PATH,
cache_subdir='models',
file_hash='bcf9965cf5064a5f9eb6d7dc69386f43')
elif blocks == [6, 12, 48, 32]:
weights_path = get_file(
'densenet201_weights_tf_dim_ordering_tf_kernels.h5',
DENSENET201_WEIGHT_PATH,
cache_subdir='models',
file_hash='7bb75edd58cb43163be7e0005fbe95ef')
else:
if blocks == [6, 12, 24, 16]:
weights_path = get_file(
'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5',
DENSENET121_WEIGHT_PATH_NO_TOP,
cache_subdir='models',
file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3')
elif blocks == [6, 12, 32, 32]:
weights_path = get_file(
'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5',
DENSENET169_WEIGHT_PATH_NO_TOP,
cache_subdir='models',
file_hash='50662582284e4cf834ce40ab4dfa58c6')
elif blocks == [6, 12, 48, 32]:
weights_path = get_file(
'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5',
DENSENET201_WEIGHT_PATH_NO_TOP,
cache_subdir='models',
file_hash='1c2de60ee40562448dbac34a0737e798')
model.load_weights(weights_path)
elif weights is not None:
model.load_weights(weights)

return model


def DenseNet121(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000):
return DenseNet([6, 12, 24, 16],
include_top, weights,
input_tensor, input_shape,
pooling, classes)


def DenseNet169(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000):
return DenseNet([6, 12, 32, 32],
include_top, weights,
input_tensor, input_shape,
pooling, classes)


def DenseNet201(include_top=True,
weights='imagenet',
input_tensor=None,
input_shape=None,
pooling=None,
classes=1000):
return DenseNet([6, 12, 48, 32],
include_top, weights,
input_tensor, input_shape,
pooling, classes)


def preprocess_input(x, data_format=None):
"""Preprocesses a numpy array encoding a batch of images.
# Arguments
x: a 3D or 4D numpy array consists of RGB values within [0, 255].
data_format: data format of the image tensor.
# Returns
Preprocessed array.
"""
return imagenet_utils.preprocess_input(x, data_format, mode='torch')

from keras_applications import densenet

setattr(DenseNet121, '__doc__', DenseNet.__doc__)
setattr(DenseNet169, '__doc__', DenseNet.__doc__)
setattr(DenseNet201, '__doc__', DenseNet.__doc__)
DenseNet121 = densenet.DenseNet121
DenseNet169 = densenet.DenseNet169
DenseNet201 = densenet.DenseNet201
decode_predictions = densenet.decode_predictions
preprocess_input = densenet.preprocess_input
Loading

0 comments on commit c9cb608

Please sign in to comment.