forked from keras-team/keras
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
* Split `applications` and `preprocessing` modules. * Fix dependencies.
- Loading branch information
Showing
17 changed files
with
111 additions
and
6,079 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,335 +1,11 @@ | ||
# -*- coding: utf-8 -*- | ||
"""DenseNet models for Keras. | ||
# Reference paper | ||
- [Densely Connected Convolutional Networks] | ||
(https://arxiv.org/abs/1608.06993) (CVPR 2017 Best Paper Award) | ||
# Reference implementation | ||
- [Torch DenseNets] | ||
(https://github.com/liuzhuang13/DenseNet/blob/master/models/densenet.lua) | ||
- [TensorNets] | ||
(https://github.com/taehoonlee/tensornets/blob/master/tensornets/densenets.py) | ||
""" | ||
from __future__ import absolute_import | ||
from __future__ import division | ||
from __future__ import print_function | ||
|
||
import os | ||
|
||
from .. import backend as K | ||
from ..models import Model | ||
from ..layers import Activation | ||
from ..layers import AveragePooling2D | ||
from ..layers import BatchNormalization | ||
from ..layers import Concatenate | ||
from ..layers import Conv2D | ||
from ..layers import Dense | ||
from ..layers import GlobalAveragePooling2D | ||
from ..layers import GlobalMaxPooling2D | ||
from ..layers import Input | ||
from ..layers import MaxPooling2D | ||
from ..layers import ZeroPadding2D | ||
from ..utils.data_utils import get_file | ||
from ..engine import get_source_inputs | ||
from . import imagenet_utils | ||
from .imagenet_utils import decode_predictions | ||
from .imagenet_utils import _obtain_input_shape | ||
|
||
|
||
DENSENET121_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet121_weights_tf_dim_ordering_tf_kernels.h5' | ||
DENSENET121_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5' | ||
DENSENET169_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet169_weights_tf_dim_ordering_tf_kernels.h5' | ||
DENSENET169_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5' | ||
DENSENET201_WEIGHT_PATH = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet201_weights_tf_dim_ordering_tf_kernels.h5' | ||
DENSENET201_WEIGHT_PATH_NO_TOP = 'https://github.com/fchollet/deep-learning-models/releases/download/v0.8/densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5' | ||
|
||
|
||
def dense_block(x, blocks, name): | ||
"""A dense block. | ||
# Arguments | ||
x: input tensor. | ||
blocks: integer, the number of building blocks. | ||
name: string, block label. | ||
# Returns | ||
output tensor for the block. | ||
""" | ||
for i in range(blocks): | ||
x = conv_block(x, 32, name=name + '_block' + str(i + 1)) | ||
return x | ||
|
||
|
||
def transition_block(x, reduction, name): | ||
"""A transition block. | ||
# Arguments | ||
x: input tensor. | ||
reduction: float, compression rate at transition layers. | ||
name: string, block label. | ||
# Returns | ||
output tensor for the block. | ||
""" | ||
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 | ||
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, | ||
name=name + '_bn')(x) | ||
x = Activation('relu', name=name + '_relu')(x) | ||
x = Conv2D(int(K.int_shape(x)[bn_axis] * reduction), 1, use_bias=False, | ||
name=name + '_conv')(x) | ||
x = AveragePooling2D(2, strides=2, name=name + '_pool')(x) | ||
return x | ||
|
||
|
||
def conv_block(x, growth_rate, name): | ||
"""A building block for a dense block. | ||
# Arguments | ||
x: input tensor. | ||
growth_rate: float, growth rate at dense layers. | ||
name: string, block label. | ||
# Returns | ||
output tensor for the block. | ||
""" | ||
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 | ||
x1 = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, | ||
name=name + '_0_bn')(x) | ||
x1 = Activation('relu', name=name + '_0_relu')(x1) | ||
x1 = Conv2D(4 * growth_rate, 1, use_bias=False, | ||
name=name + '_1_conv')(x1) | ||
x1 = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, | ||
name=name + '_1_bn')(x1) | ||
x1 = Activation('relu', name=name + '_1_relu')(x1) | ||
x1 = Conv2D(growth_rate, 3, padding='same', use_bias=False, | ||
name=name + '_2_conv')(x1) | ||
x = Concatenate(axis=bn_axis, name=name + '_concat')([x, x1]) | ||
return x | ||
|
||
|
||
def DenseNet(blocks, | ||
include_top=True, | ||
weights='imagenet', | ||
input_tensor=None, | ||
input_shape=None, | ||
pooling=None, | ||
classes=1000): | ||
"""Instantiates the DenseNet architecture. | ||
Optionally loads weights pre-trained on ImageNet. | ||
Note that the data format convention used by the model is | ||
the one specified in your Keras config at `~/.keras/keras.json`. | ||
When using TensorFlow, for best performance you should | ||
set `"image_data_format": "channels_last"` in the config. | ||
# Arguments | ||
blocks: numbers of building blocks for the four dense layers. | ||
include_top: whether to include the fully-connected | ||
layer at the top of the network. | ||
weights: one of `None` (random initialization), | ||
'imagenet' (pre-training on ImageNet), | ||
or the path to the weights file to be loaded. | ||
input_tensor: optional Keras tensor (i.e. output of `layers.Input()`) | ||
to use as image input for the model. | ||
input_shape: optional shape tuple, only to be specified | ||
if `include_top` is False (otherwise the input shape | ||
has to be `(224, 224, 3)` (with `channels_last` data format) | ||
or `(3, 224, 224)` (with `channels_first` data format). | ||
It should have exactly 3 inputs channels. | ||
pooling: optional pooling mode for feature extraction | ||
when `include_top` is `False`. | ||
- `None` means that the output of the model will be | ||
the 4D tensor output of the | ||
last convolutional layer. | ||
- `avg` means that global average pooling | ||
will be applied to the output of the | ||
last convolutional layer, and thus | ||
the output of the model will be a 2D tensor. | ||
- `max` means that global max pooling will | ||
be applied. | ||
classes: optional number of classes to classify images | ||
into, only to be specified if `include_top` is True, and | ||
if no `weights` argument is specified. | ||
# Returns | ||
A Keras model instance. | ||
# Raises | ||
ValueError: in case of invalid argument for `weights`, | ||
or invalid input shape. | ||
""" | ||
if not (weights in {'imagenet', None} or os.path.exists(weights)): | ||
raise ValueError('The `weights` argument should be either ' | ||
'`None` (random initialization), `imagenet` ' | ||
'(pre-training on ImageNet), ' | ||
'or the path to the weights file to be loaded.') | ||
|
||
if weights == 'imagenet' and include_top and classes != 1000: | ||
raise ValueError('If using `weights` as imagenet with `include_top`' | ||
' as true, `classes` should be 1000') | ||
|
||
# Determine proper input shape | ||
input_shape = _obtain_input_shape(input_shape, | ||
default_size=224, | ||
min_size=221, | ||
data_format=K.image_data_format(), | ||
require_flatten=include_top, | ||
weights=weights) | ||
|
||
if input_tensor is None: | ||
img_input = Input(shape=input_shape) | ||
else: | ||
if not K.is_keras_tensor(input_tensor): | ||
img_input = Input(tensor=input_tensor, shape=input_shape) | ||
else: | ||
img_input = input_tensor | ||
|
||
bn_axis = 3 if K.image_data_format() == 'channels_last' else 1 | ||
|
||
x = ZeroPadding2D(padding=((3, 3), (3, 3)))(img_input) | ||
x = Conv2D(64, 7, strides=2, use_bias=False, name='conv1/conv')(x) | ||
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, | ||
name='conv1/bn')(x) | ||
x = Activation('relu', name='conv1/relu')(x) | ||
x = ZeroPadding2D(padding=((1, 1), (1, 1)))(x) | ||
x = MaxPooling2D(3, strides=2, name='pool1')(x) | ||
|
||
x = dense_block(x, blocks[0], name='conv2') | ||
x = transition_block(x, 0.5, name='pool2') | ||
x = dense_block(x, blocks[1], name='conv3') | ||
x = transition_block(x, 0.5, name='pool3') | ||
x = dense_block(x, blocks[2], name='conv4') | ||
x = transition_block(x, 0.5, name='pool4') | ||
x = dense_block(x, blocks[3], name='conv5') | ||
|
||
x = BatchNormalization(axis=bn_axis, epsilon=1.001e-5, | ||
name='bn')(x) | ||
|
||
if include_top: | ||
x = GlobalAveragePooling2D(name='avg_pool')(x) | ||
x = Dense(classes, activation='softmax', name='fc1000')(x) | ||
else: | ||
if pooling == 'avg': | ||
x = GlobalAveragePooling2D(name='avg_pool')(x) | ||
elif pooling == 'max': | ||
x = GlobalMaxPooling2D(name='max_pool')(x) | ||
|
||
# Ensure that the model takes into account | ||
# any potential predecessors of `input_tensor`. | ||
if input_tensor is not None: | ||
inputs = get_source_inputs(input_tensor) | ||
else: | ||
inputs = img_input | ||
|
||
# Create model. | ||
if blocks == [6, 12, 24, 16]: | ||
model = Model(inputs, x, name='densenet121') | ||
elif blocks == [6, 12, 32, 32]: | ||
model = Model(inputs, x, name='densenet169') | ||
elif blocks == [6, 12, 48, 32]: | ||
model = Model(inputs, x, name='densenet201') | ||
else: | ||
model = Model(inputs, x, name='densenet') | ||
|
||
# Load weights. | ||
if weights == 'imagenet': | ||
if include_top: | ||
if blocks == [6, 12, 24, 16]: | ||
weights_path = get_file( | ||
'densenet121_weights_tf_dim_ordering_tf_kernels.h5', | ||
DENSENET121_WEIGHT_PATH, | ||
cache_subdir='models', | ||
file_hash='0962ca643bae20f9b6771cb844dca3b0') | ||
elif blocks == [6, 12, 32, 32]: | ||
weights_path = get_file( | ||
'densenet169_weights_tf_dim_ordering_tf_kernels.h5', | ||
DENSENET169_WEIGHT_PATH, | ||
cache_subdir='models', | ||
file_hash='bcf9965cf5064a5f9eb6d7dc69386f43') | ||
elif blocks == [6, 12, 48, 32]: | ||
weights_path = get_file( | ||
'densenet201_weights_tf_dim_ordering_tf_kernels.h5', | ||
DENSENET201_WEIGHT_PATH, | ||
cache_subdir='models', | ||
file_hash='7bb75edd58cb43163be7e0005fbe95ef') | ||
else: | ||
if blocks == [6, 12, 24, 16]: | ||
weights_path = get_file( | ||
'densenet121_weights_tf_dim_ordering_tf_kernels_notop.h5', | ||
DENSENET121_WEIGHT_PATH_NO_TOP, | ||
cache_subdir='models', | ||
file_hash='4912a53fbd2a69346e7f2c0b5ec8c6d3') | ||
elif blocks == [6, 12, 32, 32]: | ||
weights_path = get_file( | ||
'densenet169_weights_tf_dim_ordering_tf_kernels_notop.h5', | ||
DENSENET169_WEIGHT_PATH_NO_TOP, | ||
cache_subdir='models', | ||
file_hash='50662582284e4cf834ce40ab4dfa58c6') | ||
elif blocks == [6, 12, 48, 32]: | ||
weights_path = get_file( | ||
'densenet201_weights_tf_dim_ordering_tf_kernels_notop.h5', | ||
DENSENET201_WEIGHT_PATH_NO_TOP, | ||
cache_subdir='models', | ||
file_hash='1c2de60ee40562448dbac34a0737e798') | ||
model.load_weights(weights_path) | ||
elif weights is not None: | ||
model.load_weights(weights) | ||
|
||
return model | ||
|
||
|
||
def DenseNet121(include_top=True, | ||
weights='imagenet', | ||
input_tensor=None, | ||
input_shape=None, | ||
pooling=None, | ||
classes=1000): | ||
return DenseNet([6, 12, 24, 16], | ||
include_top, weights, | ||
input_tensor, input_shape, | ||
pooling, classes) | ||
|
||
|
||
def DenseNet169(include_top=True, | ||
weights='imagenet', | ||
input_tensor=None, | ||
input_shape=None, | ||
pooling=None, | ||
classes=1000): | ||
return DenseNet([6, 12, 32, 32], | ||
include_top, weights, | ||
input_tensor, input_shape, | ||
pooling, classes) | ||
|
||
|
||
def DenseNet201(include_top=True, | ||
weights='imagenet', | ||
input_tensor=None, | ||
input_shape=None, | ||
pooling=None, | ||
classes=1000): | ||
return DenseNet([6, 12, 48, 32], | ||
include_top, weights, | ||
input_tensor, input_shape, | ||
pooling, classes) | ||
|
||
|
||
def preprocess_input(x, data_format=None): | ||
"""Preprocesses a numpy array encoding a batch of images. | ||
# Arguments | ||
x: a 3D or 4D numpy array consists of RGB values within [0, 255]. | ||
data_format: data format of the image tensor. | ||
# Returns | ||
Preprocessed array. | ||
""" | ||
return imagenet_utils.preprocess_input(x, data_format, mode='torch') | ||
|
||
from keras_applications import densenet | ||
|
||
setattr(DenseNet121, '__doc__', DenseNet.__doc__) | ||
setattr(DenseNet169, '__doc__', DenseNet.__doc__) | ||
setattr(DenseNet201, '__doc__', DenseNet.__doc__) | ||
DenseNet121 = densenet.DenseNet121 | ||
DenseNet169 = densenet.DenseNet169 | ||
DenseNet201 = densenet.DenseNet201 | ||
decode_predictions = densenet.decode_predictions | ||
preprocess_input = densenet.preprocess_input |
Oops, something went wrong.