SQLAlchemy dialect for BigQuery.
from sqlalchemy import *
from sqlalchemy.engine import create_engine
from sqlalchemy.schema import *
engine = create_engine('bigquery://project')
table = Table('dataset.table', MetaData(bind=engine), autoload=True)
print(select([func.count('*')], from_obj=table).scalar())
project
in bigquery://project
is used to instantiate BigQuery client with the specific project ID. To infer project from the environment, use bigquery://
– without project
To query tables from non-default projects, use the following format for the table name: project.dataset.table
, e.g.:
sample_table = Table('bigquery-public-data.samples.natality')
By default, arraysize
is set to 5000
. arraysize
is used to set the batch size for fetching results. To change it, pass arraysize
to create_engine()
:
engine = create_engine('bigquery://project', arraysize=1000)
Install using
pip install pybigquery
Load sample tables:
./scripts/load_test_data.sh
This will create a dataset test_pybigquery
with tables named sample_one_row
and sample
.
Set up an environment and run tests:
pyvenv .env source .env/bin/activate pip install -r dev_requirements.txt pytest
- Support for Record column type