forked from zhangliliang/RPN_BF
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
add demo code. And update some training codes.
- Loading branch information
1 parent
8f50c86
commit dcfbd37
Showing
10 changed files
with
594 additions
and
8 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -19,6 +19,7 @@ imdb/cache | |
*.caffemodel | ||
*.mat | ||
|
||
|
||
# Windows Installer files | ||
*.cab | ||
*.msi | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -1,16 +1,17 @@ | ||
|
||
% extract_img_anno() | ||
% -------------------------------------------------------- | ||
% RPN_BF | ||
% Copyright (c) 2016, Liliang Zhang | ||
% Licensed under The MIT License [see LICENSE for details] | ||
% -------------------------------------------------------- | ||
|
||
dataDir='./datasets/caltech/'; | ||
addpath(genpath('./external/code3.2.1')); | ||
|
||
for s=1:2 | ||
if(s==1), type='test'; skip=[]; else type='train'; skip=3; end | ||
dbInfo(['Usa' type]); %if(s==2), type=['train' int2str2(skip,2)]; end | ||
dbInfo(['Usa' type]); | ||
if(exist([dataDir type '/annotations'],'dir')), continue; end | ||
dbExtract([dataDir type],1,skip); | ||
end | ||
|
||
% dataset.imdb_test = imdb_from_caltech_flip('./datasets/caltech', 'test', false) ; | ||
|
||
% dataset.imdb_train = imdb_from_caltech_flip('./datasets/caltech', 'train') ; | ||
% dataset.roidb_test = dataset.imdb_test.roidb_func(dataset.imdb_test); |
109 changes: 109 additions & 0 deletions
109
experiments/+Faster_RCNN_Train/do_proposal_test_caltech_boost.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,109 @@ | ||
function roidb_BF = do_proposal_test_caltech_boost(conf, model_stage, imdb, roidb) | ||
|
||
cache_dir = fullfile(pwd, 'output', conf.exp_name, 'rpn_cachedir', model_stage.cache_name, imdb.name); | ||
save_roidb_name = fullfile(cache_dir, [ 'roidb_' imdb.name '_BF.mat']); | ||
if exist(save_roidb_name, 'file') | ||
ld = load(save_roidb_name); | ||
roidb_BF = ld.roidb_BF; | ||
clear ld; | ||
return; | ||
end | ||
|
||
|
||
aboxes = proposal_test_caltech(conf, imdb, ... | ||
'net_def_file', model_stage.test_net_def_file, ... | ||
'net_file', model_stage.output_model_file, ... | ||
'cache_name', model_stage.cache_name); | ||
|
||
|
||
fprintf('Doing nms ... '); | ||
% average_thres = model_stage.nms.nms_overlap_thres; | ||
average_thres = -1; | ||
ave_per_image_topN = model_stage.nms.after_nms_topN; | ||
model_stage.nms.after_nms_topN = -1; | ||
aboxes = boxes_filter(aboxes, model_stage.nms.per_nms_topN, model_stage.nms.nms_overlap_thres, model_stage.nms.after_nms_topN, conf.use_gpu, average_thres); | ||
fprintf(' Done.\n'); | ||
|
||
% find the lower score threshold | ||
max_sample_num = 5000; | ||
sample_aboxes = aboxes(randperm(length(aboxes), min(length(aboxes), max_sample_num))); | ||
scores = zeros(ave_per_image_topN*length(sample_aboxes), 1); | ||
for i = 1:length(sample_aboxes) | ||
s_scores = sort([scores; sample_aboxes{i}(:, end)], 'descend'); | ||
scores = s_scores(1:ave_per_image_topN*length(sample_aboxes)); | ||
end | ||
score_thresh = scores(end); | ||
fprintf('score_threshold:%f\n', score_thresh); | ||
% drop the boxes which scores are lower than the thres | ||
for i = 1:length(aboxes) | ||
aboxes{i} = aboxes{i}(aboxes{i}(:, end) > score_thresh, :); | ||
end | ||
|
||
% eval the gt recall | ||
gt_num = 0; | ||
gt_re_num_5 = 0; | ||
gt_re_num_7 = 0; | ||
gt_re_num_8 = 0; | ||
gt_re_num_9 = 0; | ||
for i = 1:length(roidb.rois) | ||
% gts = roidb.rois(i).boxes; | ||
gts = roidb.rois(i).boxes(roidb.rois(i).ignores~=1, :); | ||
if ~isempty(gts) | ||
rois = aboxes{i}(:, 1:4); | ||
max_ols = max(boxoverlap(rois, gts)); | ||
gt_num = gt_num + size(gts, 1); | ||
gt_re_num_5 = gt_re_num_5 + sum(max_ols >= 0.5); | ||
gt_re_num_7 = gt_re_num_7 + sum(max_ols >= 0.7); | ||
gt_re_num_8 = gt_re_num_8 + sum(max_ols >= 0.8); | ||
gt_re_num_9 = gt_re_num_9 + sum(max_ols >= 0.9); | ||
end | ||
end | ||
fprintf('gt recall rate (ol >0.5) = %.4f\n', gt_re_num_5 / gt_num); | ||
fprintf('gt recall rate (ol >0.7) = %.4f\n', gt_re_num_7 / gt_num); | ||
fprintf('gt recall rate (ol >0.8) = %.4f\n', gt_re_num_8 / gt_num); | ||
fprintf('gt recall rate (ol >0.9) = %.4f\n', gt_re_num_9 / gt_num); | ||
|
||
roidb_regions.boxes = aboxes; | ||
roidb_regions.images = imdb.image_ids; | ||
roidb_BF = roidb_from_proposal_score(imdb, roidb, roidb_regions, ... | ||
'keep_raw_proposal', false); | ||
|
||
save(save_roidb_name, 'roidb_BF', '-v7.3'); | ||
end | ||
|
||
function aboxes = boxes_filter(aboxes, per_nms_topN, nms_overlap_thres, after_nms_topN, use_gpu, average_thres) | ||
% to speed up nms | ||
if per_nms_topN > 0 | ||
aboxes = cellfun(@(x) x(1:min(size(x, 1), per_nms_topN), :), aboxes, 'UniformOutput', false); | ||
end | ||
% do nms | ||
if nms_overlap_thres > 0 && nms_overlap_thres < 1 | ||
if average_thres > 0 | ||
for i = 1:length(aboxes) | ||
tic_toc_print('weighted ave nms: %d / %d \n', i, length(aboxes)); | ||
aboxes{i} = get_keep_boxes(aboxes{i}, 0, nms_overlap_thres, average_thres); | ||
end | ||
else | ||
if use_gpu | ||
for i = 1:length(aboxes) | ||
tic_toc_print('nms: %d / %d \n', i, length(aboxes)); | ||
aboxes{i} = aboxes{i}(nms(aboxes{i}, nms_overlap_thres, use_gpu), :); | ||
end | ||
else | ||
parfor i = 1:length(aboxes) | ||
aboxes{i} = aboxes{i}(nms(aboxes{i}, nms_overlap_thres), :); | ||
end | ||
end | ||
end | ||
end | ||
aver_boxes_num = mean(cellfun(@(x) size(x, 1), aboxes, 'UniformOutput', true)); | ||
% fprintf('aver_boxes_num = %d, select top %d\n', round(aver_boxes_num), after_nms_topN); | ||
if after_nms_topN > 0 | ||
aboxes = cellfun(@(x) x(1:min(size(x, 1), after_nms_topN), :), aboxes, 'UniformOutput', false); | ||
end | ||
end | ||
% | ||
% function regions = make_roidb_regions(aboxes, images) | ||
% regions.boxes = aboxes; | ||
% regions.images = images; | ||
% end |
175 changes: 175 additions & 0 deletions
175
experiments/script_rpn_bf_pedestrian_VGG16_caltech_demo.m
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,175 @@ | ||
function script_rpn_bf_pedestrian_VGG16_caltech_demo() | ||
close all; | ||
clc; | ||
clear mex; | ||
clear is_valid_handle; % to clear init_key | ||
run(fullfile(fileparts(fileparts(mfilename('fullpath'))), 'startup')); | ||
%% -------------------- CONFIG -------------------- | ||
opts.caffe_version = 'caffe_faster_rcnn'; | ||
opts.gpu_id = auto_select_gpu; | ||
active_caffe_mex(opts.gpu_id, opts.caffe_version); | ||
|
||
opts.per_nms_topN = -1; | ||
opts.nms_overlap_thres = 0.7; | ||
opts.after_nms_topN = 100; | ||
opts.use_gpu = true; | ||
|
||
opts.test_scales = 720; | ||
opts.test_max_size = 960; | ||
opts.feat_stride = 16; | ||
opts.test_binary = false; | ||
opts.test_min_box_size = 16; | ||
opts.test_min_box_height = 50; | ||
opts.test_drop_boxes_runoff_image = true; | ||
|
||
|
||
%% -------------------- INIT_MODEL -------------------- | ||
model_dir = fullfile(pwd, 'output', 'VGG16_caltech_final'); | ||
|
||
|
||
rpn_bf_model.rpn_net_def ... | ||
= fullfile(model_dir, 'rpn_test.prototxt'); | ||
rpn_bf_model.rpn_net ... | ||
= fullfile(model_dir, 'final'); | ||
rpn_bf_model.bf_net_def ... | ||
= fullfile(model_dir, 'bf_test.prototxt'); | ||
|
||
rpn_bf_model.conf_rpn.test_scales = opts.test_scales; | ||
rpn_bf_model.conf_rpn.test_max_size = opts.test_max_size; | ||
rpn_bf_model.conf_rpn.max_size = opts.test_max_size; | ||
rpn_bf_model.conf_rpn.feat_stride = opts.feat_stride; | ||
rpn_bf_model.conf_rpn.test_binary = opts.test_binary; | ||
rpn_bf_model.conf_rpn.test_min_box_size = opts.test_min_box_size; | ||
rpn_bf_model.conf_rpn.test_min_box_height = opts.test_min_box_height; | ||
rpn_bf_model.conf_rpn.test_drop_boxes_runoff_image = opts.test_drop_boxes_runoff_image; | ||
|
||
|
||
rpn_bf_model.conf_bf.test_scales = opts.test_scales; | ||
rpn_bf_model.conf_bf.test_max_size = opts.test_max_size; | ||
rpn_bf_model.conf_bf.max_size = opts.test_max_size; | ||
|
||
if opts.use_gpu | ||
ld = load(fullfile(model_dir, 'mean_image')); | ||
rpn_bf_model.conf_rpn.image_means = gpuArray(ld.image_mean); | ||
rpn_bf_model.conf_bf.image_means = gpuArray(ld.image_mean); | ||
clear ld; | ||
end | ||
ld = load(fullfile(model_dir, 'anchors')); | ||
rpn_bf_model.conf_rpn.anchors = ld.anchors; | ||
clear ld; | ||
|
||
rpn_net = caffe.Net(rpn_bf_model.rpn_net_def, 'test'); | ||
rpn_net.copy_from(rpn_bf_model.rpn_net); | ||
fast_rcnn_net = caffe.Net(rpn_bf_model.bf_net_def, 'test'); | ||
|
||
|
||
% set gpu/cpu | ||
if opts.use_gpu | ||
caffe.set_mode_gpu(); | ||
else | ||
caffe.set_mode_cpu(); | ||
end | ||
|
||
% addpath('external/code3.2.1'); | ||
addpath(genpath('external/toolbox')); | ||
ld = load(fullfile(model_dir, 'DeepCaltech_otfDetector')); | ||
detector = ld.detector; | ||
clear ld; | ||
|
||
rpn_bf_model.conf_bf.nms_thres = 0.5; | ||
rpn_bf_model.conf_bf.cascThr = -1; | ||
|
||
featmap_blobs_names = {'conv3_3', 'conv4_3_atrous'}; | ||
|
||
%% -------------------- WARM UP -------------------- | ||
% the first run will be slower; use an empty image to warm up | ||
|
||
for j = 1:2 % we warm up 2 times | ||
im = uint8(ones(375, 500, 3)*128); | ||
if opts.use_gpu | ||
im = gpuArray(im); | ||
end | ||
[boxes, scores] = proposal_im_detect_caltech(rpn_bf_model.conf_rpn, rpn_net, im); | ||
aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu); | ||
featmap_blobs = cell(size(featmap_blobs_names)); | ||
for i = 1:length(featmap_blobs_names); | ||
featmap_blobs{i} = rpn_net.blobs(featmap_blobs_names{i}); | ||
end | ||
feat = rois_get_features_from_featmap_ratio(rpn_bf_model.conf_bf, fast_rcnn_net, im, featmap_blobs, aboxes(:, 1:4), 2000, 1); | ||
end | ||
|
||
%% -------------------- TESTING -------------------- | ||
im_names = {'ped1.jpg', 'ped2.jpg', 'ped3.jpg'}; | ||
|
||
|
||
running_time = []; | ||
for j = 1:length(im_names) | ||
|
||
im = imread(fullfile(pwd, im_names{j})); | ||
|
||
if opts.use_gpu | ||
im = gpuArray(im); | ||
end | ||
|
||
% test rpn | ||
th = tic(); | ||
[boxes, scores] = proposal_im_detect(rpn_bf_model.conf_rpn, rpn_net, im); | ||
t_proposal = toc(th); | ||
th = tic(); | ||
aboxes = boxes_filter([boxes, scores], opts.per_nms_topN, opts.nms_overlap_thres, opts.after_nms_topN, opts.use_gpu); | ||
t_nms = toc(th); | ||
|
||
% test bf | ||
th = tic(); | ||
featmap_blobs = cell(size(featmap_blobs_names)); | ||
for i = 1:length(featmap_blobs_names); | ||
featmap_blobs{i} = rpn_net.blobs(featmap_blobs_names{i}); | ||
end | ||
feat = rois_get_features_from_featmap_ratio(rpn_bf_model.conf_bf, fast_rcnn_net, im, featmap_blobs, aboxes(:, 1:4), 2000, 1); | ||
scores = adaBoostApply(feat, detector.clf); | ||
bbs = [aboxes(:, 1:4) scores]; | ||
sel_idx = nms(bbs, rpn_bf_model.conf_bf.nms_thres); | ||
sel_idx = intersect(sel_idx, find(bbs(:, end) > rpn_bf_model.conf_bf.cascThr)); | ||
scores = scores(sel_idx, :); | ||
boxes = aboxes(sel_idx, 1:4); | ||
t_detection = toc(th); | ||
|
||
fprintf('%s (%dx%d): time %.3fs (resize+conv+proposal: %.3fs, nms+regionwise: %.3fs)\n', im_names{j}, ... | ||
size(im, 2), size(im, 1), t_proposal + t_nms + t_detection, t_proposal, t_nms+t_detection); | ||
running_time(end+1) = t_proposal + t_nms + t_detection; | ||
|
||
% visualize | ||
classes = {'pedestrian'}; | ||
boxes_cell = cell(length(classes), 1); | ||
thres = 0.6; | ||
for i = 1:length(boxes_cell) | ||
boxes_cell{i} = [boxes(:, (1+(i-1)*4):(i*4)), scores(:, i)]; | ||
boxes_cell{i} = boxes_cell{i}(nms(boxes_cell{i}, 0.3), :); | ||
|
||
I = boxes_cell{i}(:, 5) >= thres; | ||
boxes_cell{i} = boxes_cell{i}(I, :); | ||
end | ||
figure(j); | ||
showboxes(im, boxes_cell, classes, 'voc'); | ||
pause(0.1); | ||
end | ||
fprintf('mean time: %.3fs\n', mean(running_time)); | ||
|
||
caffe.reset_all(); | ||
clear mex; | ||
|
||
end | ||
|
||
function aboxes = boxes_filter(aboxes, per_nms_topN, nms_overlap_thres, after_nms_topN, use_gpu) | ||
% to speed up nms | ||
if per_nms_topN > 0 | ||
aboxes = aboxes(1:min(length(aboxes), per_nms_topN), :); | ||
end | ||
% do nms | ||
if nms_overlap_thres > 0 && nms_overlap_thres < 1 | ||
aboxes = aboxes(nms(aboxes, nms_overlap_thres, use_gpu), :); | ||
end | ||
if after_nms_topN > 0 | ||
aboxes = aboxes(1:min(length(aboxes), after_nms_topN), :); | ||
end | ||
end |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Oops, something went wrong.