Skip to content

Commit

Permalink
[SPARK-12057][SQL] Prevent failure on corrupt JSON records
Browse files Browse the repository at this point in the history
This PR makes JSON parser and schema inference handle more cases where we have unparsed records. It is based on #10043. The last commit fixes the failed test and updates the logic of schema inference.

Regarding the schema inference change, if we have something like
```
{"f1":1}
[1,2,3]
```
originally, we will get a DF without any column.
After this change, we will get a DF with columns `f1` and `_corrupt_record`. Basically, for the second row, `[1,2,3]` will be the value of `_corrupt_record`.

When merge this PR, please make sure that the author is simplyianm.

JIRA: https://issues.apache.org/jira/browse/SPARK-12057

Closes #10043

Author: Ian Macalinao <[email protected]>
Author: Yin Huai <[email protected]>

Closes #10288 from yhuai/handleCorruptJson.
  • Loading branch information
yhuai authored and rxin committed Dec 17, 2015
1 parent 437583f commit 9d66c42
Show file tree
Hide file tree
Showing 4 changed files with 90 additions and 12 deletions.
Original file line number Diff line number Diff line change
Expand Up @@ -61,7 +61,10 @@ private[json] object InferSchema {
StructType(Seq(StructField(columnNameOfCorruptRecords, StringType)))
}
}
}.treeAggregate[DataType](StructType(Seq()))(compatibleRootType, compatibleRootType)
}.treeAggregate[DataType](
StructType(Seq()))(
compatibleRootType(columnNameOfCorruptRecords),
compatibleRootType(columnNameOfCorruptRecords))

canonicalizeType(rootType) match {
case Some(st: StructType) => st
Expand Down Expand Up @@ -170,12 +173,38 @@ private[json] object InferSchema {
case other => Some(other)
}

private def withCorruptField(
struct: StructType,
columnNameOfCorruptRecords: String): StructType = {
if (!struct.fieldNames.contains(columnNameOfCorruptRecords)) {
// If this given struct does not have a column used for corrupt records,
// add this field.
struct.add(columnNameOfCorruptRecords, StringType, nullable = true)
} else {
// Otherwise, just return this struct.
struct
}
}

/**
* Remove top-level ArrayType wrappers and merge the remaining schemas
*/
private def compatibleRootType: (DataType, DataType) => DataType = {
case (ArrayType(ty1, _), ty2) => compatibleRootType(ty1, ty2)
case (ty1, ArrayType(ty2, _)) => compatibleRootType(ty1, ty2)
private def compatibleRootType(
columnNameOfCorruptRecords: String): (DataType, DataType) => DataType = {
// Since we support array of json objects at the top level,
// we need to check the element type and find the root level data type.
case (ArrayType(ty1, _), ty2) => compatibleRootType(columnNameOfCorruptRecords)(ty1, ty2)
case (ty1, ArrayType(ty2, _)) => compatibleRootType(columnNameOfCorruptRecords)(ty1, ty2)
// If we see any other data type at the root level, we get records that cannot be
// parsed. So, we use the struct as the data type and add the corrupt field to the schema.
case (struct: StructType, NullType) => struct
case (NullType, struct: StructType) => struct
case (struct: StructType, o) if !o.isInstanceOf[StructType] =>
withCorruptField(struct, columnNameOfCorruptRecords)
case (o, struct: StructType) if !o.isInstanceOf[StructType] =>
withCorruptField(struct, columnNameOfCorruptRecords)
// If we get anything else, we call compatibleType.
// Usually, when we reach here, ty1 and ty2 are two StructTypes.
case (ty1, ty2) => compatibleType(ty1, ty2)
}

Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -31,6 +31,8 @@ import org.apache.spark.sql.types._
import org.apache.spark.unsafe.types.UTF8String
import org.apache.spark.util.Utils

private[json] class SparkSQLJsonProcessingException(msg: String) extends RuntimeException(msg)

object JacksonParser {

def parse(
Expand Down Expand Up @@ -110,7 +112,7 @@ object JacksonParser {
lowerCaseValue.equals("-inf")) {
value.toFloat
} else {
sys.error(s"Cannot parse $value as FloatType.")
throw new SparkSQLJsonProcessingException(s"Cannot parse $value as FloatType.")
}

case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, DoubleType) =>
Expand All @@ -127,7 +129,7 @@ object JacksonParser {
lowerCaseValue.equals("-inf")) {
value.toDouble
} else {
sys.error(s"Cannot parse $value as DoubleType.")
throw new SparkSQLJsonProcessingException(s"Cannot parse $value as DoubleType.")
}

case (VALUE_NUMBER_INT | VALUE_NUMBER_FLOAT, dt: DecimalType) =>
Expand Down Expand Up @@ -174,7 +176,11 @@ object JacksonParser {
convertField(factory, parser, udt.sqlType)

case (token, dataType) =>
sys.error(s"Failed to parse a value for data type $dataType (current token: $token).")
// We cannot parse this token based on the given data type. So, we throw a
// SparkSQLJsonProcessingException and this exception will be caught by
// parseJson method.
throw new SparkSQLJsonProcessingException(
s"Failed to parse a value for data type $dataType (current token: $token).")
}
}

Expand Down Expand Up @@ -267,15 +273,14 @@ object JacksonParser {
array.toArray[InternalRow](schema)
}
case _ =>
sys.error(
s"Failed to parse record $record. Please make sure that each line of " +
"the file (or each string in the RDD) is a valid JSON object or " +
"an array of JSON objects.")
failedRecord(record)
}
}
} catch {
case _: JsonProcessingException =>
failedRecord(record)
case _: SparkSQLJsonProcessingException =>
failedRecord(record)
}
}
}
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -1427,4 +1427,41 @@ class JsonSuite extends QueryTest with SharedSQLContext with TestJsonData {
}
}
}

test("SPARK-12057 additional corrupt records do not throw exceptions") {
// Test if we can query corrupt records.
withSQLConf(SQLConf.COLUMN_NAME_OF_CORRUPT_RECORD.key -> "_unparsed") {
withTempTable("jsonTable") {
val schema = StructType(
StructField("_unparsed", StringType, true) ::
StructField("dummy", StringType, true) :: Nil)

{
// We need to make sure we can infer the schema.
val jsonDF = sqlContext.read.json(additionalCorruptRecords)
assert(jsonDF.schema === schema)
}

{
val jsonDF = sqlContext.read.schema(schema).json(additionalCorruptRecords)
jsonDF.registerTempTable("jsonTable")

// In HiveContext, backticks should be used to access columns starting with a underscore.
checkAnswer(
sql(
"""
|SELECT dummy, _unparsed
|FROM jsonTable
""".stripMargin),
Row("test", null) ::
Row(null, """[1,2,3]""") ::
Row(null, """":"test", "a":1}""") ::
Row(null, """42""") ::
Row(null, """ ","ian":"test"}""") :: Nil
)
}
}
}
}

}
Original file line number Diff line number Diff line change
Expand Up @@ -188,6 +188,14 @@ private[json] trait TestJsonData {
"""{"b":"str_b_4", "a":"str_a_4", "c":"str_c_4"}""" ::
"""]""" :: Nil)

def additionalCorruptRecords: RDD[String] =
sqlContext.sparkContext.parallelize(
"""{"dummy":"test"}""" ::
"""[1,2,3]""" ::
"""":"test", "a":1}""" ::
"""42""" ::
""" ","ian":"test"}""" :: Nil)

def emptyRecords: RDD[String] =
sqlContext.sparkContext.parallelize(
"""{""" ::
Expand All @@ -197,7 +205,6 @@ private[json] trait TestJsonData {
"""{"b": [{"c": {}}]}""" ::
"""]""" :: Nil)


lazy val singleRow: RDD[String] = sqlContext.sparkContext.parallelize("""{"a":123}""" :: Nil)

def empty: RDD[String] = sqlContext.sparkContext.parallelize(Seq[String]())
Expand Down

0 comments on commit 9d66c42

Please sign in to comment.