forked from azl397985856/leetcode
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
feat: azl397985856#4 median of two sorted array (azl397985856#85)
- Loading branch information
1 parent
8197f0a
commit ed24ab2
Showing
8 changed files
with
176 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,173 @@ | ||
## 题目地址 | ||
https://leetcode.com/problems/median-of-two-sorted-arrays/ | ||
|
||
## 题目描述 | ||
``` | ||
There are two sorted arrays nums1 and nums2 of size m and n respectively. | ||
Find the median of the two sorted arrays. The overall run time complexity should be O(log (m+n)). | ||
You may assume nums1 and nums2 cannot be both empty. | ||
Example 1: | ||
nums1 = [1, 3] | ||
nums2 = [2] | ||
The median is 2.0 | ||
Example 2: | ||
nums1 = [1, 2] | ||
nums2 = [3, 4] | ||
The median is (2 + 3)/2 = 2.5 | ||
``` | ||
|
||
## 思路 | ||
首先了解一下Median的概念,一个数组中median就是把数组分成左右等分的中位数。 | ||
|
||
如下图: | ||
![median](../assets/problems/4.median-of-two-sorted-array-1.jpg) | ||
|
||
这道题,很容易想到暴力解法,时间复杂度和空间复杂度都是`O(m+n)`, 不符合题中给出`O(log(m+n))`时间复杂度的要求。 | ||
我们可以从简单的解法入手,试了一下,暴力解法也是可以被Leetcode Accept的. 分析中会给出两种解法,暴力求解和二分解法。 | ||
|
||
#### 解法一 - 暴力 (Brute Force) | ||
暴力解主要是要merge两个排序的数组`(A,B)`成一个排序的数组。 | ||
|
||
用两个`pointer(i,j)`,`i` 从数组`A`起始位置开始,即`i=0`开始,`j` 从数组`B`起始位置, 即`j=0`开始. | ||
一一比较 `A[i] 和 B[j]`, | ||
1. 如果`A[i] <= B[j]`, 则把`A[i]` 放入新的数组中,i往后移一位,即 `i+1`. | ||
2. 如果`A[i] > B[j]`, 则把`B[j]` 放入新的数组中,j往后移一位,即 `j+1`. | ||
3. 重复步骤#1 和 #2,直到`i`移到`A`最后,或者`j`移到`B`最后。 | ||
4. 如果`j`移动到`B`数组最后,那么直接把剩下的所有`A`依次放入新的数组中. | ||
5. 如果`i`移动到`A`数组最后,那么直接把剩下的所有`B`依次放入新的数组中. | ||
|
||
Merge的过程如下图。 | ||
![merge two sorted array](../assets/problems/4.median-of-two-sorted-array-2.jpg) | ||
|
||
|
||
*时间复杂度: `O(m+n) - m is length of A, n is length of B`* | ||
|
||
*空间复杂度: `O(m+n)`* | ||
|
||
#### 解法二 - 二分查找 (Binary Search) | ||
由于题中给出的数组都是排好序的,在排好序的数组中查找很容易想到可以用二分查找(Binary Search), 这里对数组长度小的做二分, | ||
保证数组A 和 数组B 做partition 之后 | ||
|
||
`len(Aleft)+len(Bleft)=(m+n+1)/2 - m是数组A的长度, n是数组B的长度` | ||
|
||
对数组A的做partition的位置是区间`[0,m]` | ||
|
||
如图: | ||
![partition A,B](../assets/problems/4.median-of-two-sorted-array-3.png) | ||
|
||
下图给出几种不同情况的例子(注意但左边或者右边没有元素的时候,左边用`INF_MIN`,右边用`INF_MAX`表示左右的元素: | ||
![median examples](../assets/problems/4.median-of-two-sorted-array-5.png) | ||
|
||
下图给出具体做的partition 解题的例子步骤, | ||
![median partition example](../assets/problems/4.median-of-two-sorted-array-4.png) | ||
|
||
*时间复杂度: `O(log(min(m, n)) - m is length of A, n is length of B`* | ||
|
||
*空间复杂度: `O(1)` - 这里没有用额外的空间* | ||
|
||
## 关键点分析 | ||
1. 暴力求解,在线性时间内merge两个排好序的数组成一个数组。 | ||
2. 二分查找,关键点在于 | ||
- 要partition两个排好序的数组成左右两等份,partition需要满足`len(Aleft)+len(Bleft)=(m+n+1)/2 - m是数组A的长度, n是数组B的长度` | ||
|
||
- 并且partition后 A左边最大(`maxLeftA`), A右边最小(`minRightA`), B左边最大(`maxLeftB`), B右边最小(`minRightB`) 满足 | ||
`(maxLeftA <= minRightB && maxLeftB <= minRightA)` | ||
|
||
有了这两个条件,那么median就在这四个数中,根据奇数或者是偶数, | ||
``` | ||
奇数: | ||
median = max(maxLeftA, maxLeftB) | ||
偶数: | ||
median = (max(maxLeftA, maxLeftB) + min(minRightA, minRightB)) / 2 | ||
``` | ||
|
||
## 代码(Java code) | ||
*解法一 - 暴力解法(Brute force)* | ||
```java | ||
class MedianTwoSortedArrayBruteForce { | ||
public double findMedianSortedArrays(int[] nums1, int[] nums2) { | ||
int[] newArr = mergeTwoSortedArray(nums1, nums2); | ||
int n = newArr.length; | ||
if (n % 2 == 0) { | ||
// even | ||
return (double) (newArr[n / 2] + newArr[n / 2 - 1]) / 2; | ||
} else { | ||
// odd | ||
return (double) newArr[n / 2]; | ||
} | ||
} | ||
private int[] mergeTwoSortedArray(int[] nums1, int[] nums2) { | ||
int m = nums1.length; | ||
int n = nums2.length; | ||
int[] res = new int[m + n]; | ||
int i = 0; | ||
int j = 0; | ||
int idx = 0; | ||
while (i < m && j < n) { | ||
if (nums1[i] <= nums2[j]) { | ||
res[idx++] = nums1[i++]; | ||
} else { | ||
res[idx++] = nums2[j++]; | ||
} | ||
} | ||
while (i < m) { | ||
res[idx++] = nums1[i++]; | ||
} | ||
while (j < n) { | ||
res[idx++] = nums2[j++]; | ||
} | ||
return res; | ||
} | ||
} | ||
``` | ||
*解法二 - 二分查找(Binary Search* | ||
```java | ||
class MedianSortedTwoArrayBinarySearch { | ||
public static double findMedianSortedArraysBinarySearch(int[] nums1, int[] nums2) { | ||
// do binary search for shorter length array, make sure time complexity log(min(m,n)). | ||
if (nums1.length > nums2.length) { | ||
return findMedianSortedArraysBinarySearch(nums2, nums1); | ||
} | ||
int m = nums1.length; | ||
int n = nums2.length; | ||
int lo = 0; | ||
int hi = m; | ||
while (lo <= hi) { | ||
// partition A position i | ||
int i = lo + (hi - lo) / 2; | ||
// partition B position j | ||
int j = (m + n + 1) / 2 - i; | ||
|
||
int maxLeftA = i == 0 ? Integer.MIN_VALUE : nums1[i - 1]; | ||
int minRightA = i == m ? Integer.MAX_VALUE : nums1[i]; | ||
|
||
int maxLeftB = j == 0 ? Integer.MIN_VALUE : nums2[j - 1]; | ||
int minRightB = j == n ? Integer.MAX_VALUE : nums2[j]; | ||
|
||
if (maxLeftA <= minRightB && maxLeftB <= minRightA) { | ||
// total length is even | ||
if ((m + n) % 2 == 0) { | ||
return (double) (Math.max(maxLeftA, maxLeftB) + Math.min(minRightA, minRightB)) / 2; | ||
} else { | ||
// total length is odd | ||
return (double) Math.max(maxLeftA, maxLeftB); | ||
} | ||
} else if (maxLeftA > minRightB) { | ||
// binary search left half | ||
hi = i - 1; | ||
} else { | ||
// binary search right half | ||
lo = i + 1; | ||
} | ||
} | ||
return 0.0; | ||
} | ||
} | ||
``` |