Skip to content

Credit Spread Prediction using machine learning method for IAQF Competition

Notifications You must be signed in to change notification settings

kkyy/Credit-Spread-Prediction

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

1 Commit
 
 
 
 
 
 
 
 

Repository files navigation

Credit-Spread-predicting-machine-learning

Credit Spread indicates the risk premium of a risky security, which can serve as a measure of economic uncertainty. Successful prediction of movements in credit spread makes it possible for investors to develop profitable trading strategies.

In this report, we selected various features with high predictive power on economic uncertainty, to be able to predict credit spread. We developed a pipeline for data preprocessing and feature engineering. We also used Hidden Markov Model to detect market regime shifting. Then, we developed an XGBoost model that proved to be more effective when compared to our linear regression benchmark model. Based on our prediction, we built a trading strategy on the correlated ETF.

About

Credit Spread Prediction using machine learning method for IAQF Competition

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Jupyter Notebook 100.0%