Skip to content
forked from Thytu/Agentarium

open-source framework for creating and managing simulations populated with AI-powered agents. It provides an intuitive platform for designing complex, interactive environments where agents can act, learn, and evolve.

License

Notifications You must be signed in to change notification settings

kn2167/Agentarium

 
 

Repository files navigation

🌿 Agentarium

License: Apache 2.0 Python 3.10+ PyPI version

A powerful Python framework for managing and orchestrating AI agents with ease. Agentarium provides a flexible and intuitive way to create, manage, and coordinate interactions between multiple AI agents in various environments.

InstallationQuick StartFeaturesExamplesDocumentationContributing

🚀 Installation

pip install agentarium

🎯 Quick Start

from agentarium import Agent

# Create agents
agent1 = Agent(name="agent1")
agent2 = Agent(name="agent2")

# Direct communication between agents
alice.talk_to(bob, "Hello Bob! I heard you're working on some interesting ML projects.")

# Agent autonomously decides its next action based on context
bob.act()

✨ Features

  • 🤖 Advanced Agent Management: Create and orchestrate multiple AI agents with different roles and capabilities
  • 🔄 Autonomous Decision Making: Agents can make decisions and take actions based on their context
  • 💾 Checkpoint System: Save and restore agent states and interactions for reproducibility
  • 🎭 Customizable Actions: Define custom actions beyond the default talk/think capabilities
  • 🧠 Memory & Context: Agents maintain memory of past interactions for contextual responses
  • ⚡ AI Integration: Seamless integration with various AI providers through aisuite
  • ⚡ Performance Optimized: Built for efficiency and scalability
  • 🛠️ Extensible Architecture: Easy to extend and customize for your specific needs

📚 Examples

Basic Chat Example

Create a simple chat interaction between agents:

from agentarium import Agent

# Create agents with specific characteristics
alice = Agent.create_agent(name="Alice", occupation="Software Engineer")
bob = Agent.create_agent(name="Bob", occupation="Data Scientist")

# Direct communication
alice.talk_to(bob, "Hello Bob! I heard you're working on some interesting projects.")

# Let Bob autonomously decide how to respond
bob.act()

Adding Custom Actions

Add new capabilities to your agents:

from agentarium import Agent, Action

# Define a simple greeting action
def greet(name: str, **kwargs) -> str:
    return f"Hello, {name}!"

# Create an agent and add the greeting action
agent = Agent.create_agent(name="Alice")
agent.add_action(
    Action(
        name="GREET",
        description="Greet someone by name",
        parameters=["name"],
        function=greet
    )
)

# Use the custom action
agent.execute_action("GREET", "Bob")

Using Checkpoints

Save and restore agent states:

from agentarium import Agent
from agentarium.CheckpointManager import CheckpointManager

# Initialize checkpoint manager
checkpoint = CheckpointManager("demo")

# Create and interact with agents
alice = Agent.create_agent(name="Alice")
bob = Agent.create_agent(name="Bob")

alice.talk_to(bob, "What a beautiful day!")
checkpoint.update(step="interaction_1")

# Save the current state
checkpoint.save()

More examples can be found in the examples/ directory.

📖 Documentation

Agent Creation

Create agents with custom characteristics:

agent = Agent.create_agent(
    name="Alice",
    age=28,
    occupation="Software Engineer",
    location="San Francisco",
    bio="A passionate developer who loves AI"
)

LLM Configuration

Configure your LLM provider and credentials using a YAML file:

llm:
  provider: "openai"  # The LLM provider to use (any provider supported by aisuite)
  model: "gpt-4"      # The specific model to use from the provider

aisuite:              # (optional) Credentials for aisuite
  openai:            # Provider-specific configuration
    api_key: "sk-..."  # Your API key

Key Components

  • Agent: Core class for creating AI agents with personalities and autonomous behavior
  • CheckpointManager: Handles saving and loading of agent states and interactions
  • Action: Base class for defining custom agent actions
  • AgentInteractionManager: Manages and tracks all agent interactions

🤝 Contributing

Contributions are welcome! Here's how you can help:

  1. Fork the repository
  2. Create a new branch (git checkout -b feature/amazing-feature)
  3. Make your changes
  4. Commit your changes (git commit -m 'feat: add amazing feature')
  5. Push to the branch (git push origin feature/amazing-feature)
  6. Open a Pull Request

📄 License

This project is licensed under the Apache 2.0 License - see the LICENSE file for details.

🙏 Acknowledgments

Thanks to all contributors who have helped shape Agentarium 🫶

About

open-source framework for creating and managing simulations populated with AI-powered agents. It provides an intuitive platform for designing complex, interactive environments where agents can act, learn, and evolve.

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%