Skip to content

Commit

Permalink
[SPARK-8232] [SQL] Add sort_array support
Browse files Browse the repository at this point in the history
Add expression `sort_array` support.

Author: Cheng Hao <[email protected]>

This patch had conflicts when merged, resolved by
Committer: Davies Liu <[email protected]>

Closes apache#7581 from chenghao-intel/sort_array and squashes the following commits:

664c960 [Cheng Hao] update the sort_array by using the ArrayData
276d2d5 [Cheng Hao] add empty line
0edab9c [Cheng Hao] Add asending/descending support for sort_array
80fc0f8 [Cheng Hao] Add type checking
a42b678 [Cheng Hao] Add sort_array support
  • Loading branch information
chenghao-intel authored and davies committed Aug 1, 2015
1 parent 3320b0b commit 67ad4e2
Show file tree
Hide file tree
Showing 6 changed files with 186 additions and 7 deletions.
20 changes: 20 additions & 0 deletions python/pyspark/sql/functions.py
Original file line number Diff line number Diff line change
Expand Up @@ -51,6 +51,7 @@
'sha1',
'sha2',
'size',
'sort_array',
'sparkPartitionId',
'struct',
'udf',
Expand Down Expand Up @@ -570,8 +571,10 @@ def length(col):
def format_number(col, d):
"""Formats the number X to a format like '#,###,###.##', rounded to d decimal places,
and returns the result as a string.
:param col: the column name of the numeric value to be formatted
:param d: the N decimal places
>>> sqlContext.createDataFrame([(5,)], ['a']).select(format_number('a', 4).alias('v')).collect()
[Row(v=u'5.0000')]
"""
Expand Down Expand Up @@ -968,6 +971,23 @@ def soundex(col):
return Column(sc._jvm.functions.size(_to_java_column(col)))


@since(1.5)
def sort_array(col, asc=True):
"""
Collection function: sorts the input array for the given column in ascending order.
:param col: name of column or expression
>>> df = sqlContext.createDataFrame([([2, 1, 3],),([1],),([],)], ['data'])
>>> df.select(sort_array(df.data).alias('r')).collect()
[Row(r=[1, 2, 3]), Row(r=[1]), Row(r=[])]
>>> df.select(sort_array(df.data, asc=False).alias('r')).collect()
[Row(r=[3, 2, 1]), Row(r=[1]), Row(r=[])]
"""
sc = SparkContext._active_spark_context
return Column(sc._jvm.functions.sort_array(_to_java_column(col), asc))


class UserDefinedFunction(object):
"""
User defined function in Python
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -233,6 +233,7 @@ object FunctionRegistry {

// collection functions
expression[Size]("size"),
expression[SortArray]("sort_array"),

// misc functions
expression[Crc32]("crc32"),
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -16,7 +16,10 @@
*/
package org.apache.spark.sql.catalyst.expressions

import org.apache.spark.sql.catalyst.expressions.codegen.{CodeGenContext, GeneratedExpressionCode}
import java.util.Comparator

import org.apache.spark.sql.catalyst.analysis.TypeCheckResult
import org.apache.spark.sql.catalyst.expressions.codegen.{CodegenFallback, CodeGenContext, GeneratedExpressionCode}
import org.apache.spark.sql.types._

/**
Expand All @@ -39,3 +42,78 @@ case class Size(child: Expression) extends UnaryExpression with ExpectsInputType
nullSafeCodeGen(ctx, ev, c => s"${ev.primitive} = ($c).$sizeCall;")
}
}

/**
* Sorts the input array in ascending / descending order according to the natural ordering of
* the array elements and returns it.
*/
case class SortArray(base: Expression, ascendingOrder: Expression)
extends BinaryExpression with ExpectsInputTypes with CodegenFallback {

def this(e: Expression) = this(e, Literal(true))

override def left: Expression = base
override def right: Expression = ascendingOrder
override def dataType: DataType = base.dataType
override def inputTypes: Seq[AbstractDataType] = Seq(ArrayType, BooleanType)

override def checkInputDataTypes(): TypeCheckResult = base.dataType match {
case _ @ ArrayType(n: AtomicType, _) => TypeCheckResult.TypeCheckSuccess
case _ @ ArrayType(n, _) => TypeCheckResult.TypeCheckFailure(
s"Type $n is not the AtomicType, we can not perform the ordering operations")
case other =>
TypeCheckResult.TypeCheckFailure(s"ArrayType(AtomicType) is expected, but we got $other")
}

@transient
private lazy val lt = {
val ordering = base.dataType match {
case _ @ ArrayType(n: AtomicType, _) => n.ordering.asInstanceOf[Ordering[Any]]
}

new Comparator[Any]() {
override def compare(o1: Any, o2: Any): Int = {
if (o1 == null && o2 == null) {
0
} else if (o1 == null) {
-1
} else if (o2 == null) {
1
} else {
ordering.compare(o1, o2)
}
}
}
}

@transient
private lazy val gt = {
val ordering = base.dataType match {
case _ @ ArrayType(n: AtomicType, _) => n.ordering.asInstanceOf[Ordering[Any]]
}

new Comparator[Any]() {
override def compare(o1: Any, o2: Any): Int = {
if (o1 == null && o2 == null) {
0
} else if (o1 == null) {
1
} else if (o2 == null) {
-1
} else {
-ordering.compare(o1, o2)
}
}
}
}

override def nullSafeEval(array: Any, ascending: Any): Any = {
val data = array.asInstanceOf[ArrayData].toArray().asInstanceOf[Array[AnyRef]]
java.util.Arrays.sort(
data,
if (ascending.asInstanceOf[Boolean]) lt else gt)
new GenericArrayData(data.asInstanceOf[Array[Any]])
}

override def prettyName: String = "sort_array"
}
Original file line number Diff line number Diff line change
Expand Up @@ -43,4 +43,26 @@ class CollectionFunctionsSuite extends SparkFunSuite with ExpressionEvalHelper {
checkEvaluation(Literal.create(null, MapType(StringType, StringType)), null)
checkEvaluation(Literal.create(null, ArrayType(StringType)), null)
}

test("Sort Array") {
val a0 = Literal.create(Seq(2, 1, 3), ArrayType(IntegerType))
val a1 = Literal.create(Seq[Integer](), ArrayType(IntegerType))
val a2 = Literal.create(Seq("b", "a"), ArrayType(StringType))
val a3 = Literal.create(Seq("b", null, "a"), ArrayType(StringType))

checkEvaluation(new SortArray(a0), Seq(1, 2, 3))
checkEvaluation(new SortArray(a1), Seq[Integer]())
checkEvaluation(new SortArray(a2), Seq("a", "b"))
checkEvaluation(new SortArray(a3), Seq(null, "a", "b"))
checkEvaluation(SortArray(a0, Literal(true)), Seq(1, 2, 3))
checkEvaluation(SortArray(a1, Literal(true)), Seq[Integer]())
checkEvaluation(SortArray(a2, Literal(true)), Seq("a", "b"))
checkEvaluation(new SortArray(a3, Literal(true)), Seq(null, "a", "b"))
checkEvaluation(SortArray(a0, Literal(false)), Seq(3, 2, 1))
checkEvaluation(SortArray(a1, Literal(false)), Seq[Integer]())
checkEvaluation(SortArray(a2, Literal(false)), Seq("b", "a"))
checkEvaluation(new SortArray(a3, Literal(false)), Seq("b", "a", null))

checkEvaluation(Literal.create(null, ArrayType(StringType)), null)
}
}
19 changes: 15 additions & 4 deletions sql/core/src/main/scala/org/apache/spark/sql/functions.scala
Original file line number Diff line number Diff line change
Expand Up @@ -2223,19 +2223,30 @@ object functions {
//////////////////////////////////////////////////////////////////////////////////////////////

/**
* Returns length of array or map
* Returns length of array or map.
*
* @group collection_funcs
* @since 1.5.0
*/
def size(columnName: String): Column = size(Column(columnName))
def size(e: Column): Column = Size(e.expr)

/**
* Returns length of array or map
* Sorts the input array for the given column in ascending order,
* according to the natural ordering of the array elements.
*
* @group collection_funcs
* @since 1.5.0
*/
def size(column: Column): Column = Size(column.expr)
def sort_array(e: Column): Column = sort_array(e, true)

/**
* Sorts the input array for the given column in ascending / descending order,
* according to the natural ordering of the array elements.
*
* @group collection_funcs
* @since 1.5.0
*/
def sort_array(e: Column, asc: Boolean): Column = SortArray(e.expr, lit(asc).expr)

//////////////////////////////////////////////////////////////////////////////////////////////
//////////////////////////////////////////////////////////////////////////////////////////////
Expand Down
Original file line number Diff line number Diff line change
Expand Up @@ -267,14 +267,61 @@ class DataFrameFunctionsSuite extends QueryTest {
)
}

test("sort_array function") {
val df = Seq(
(Array[Int](2, 1, 3), Array("b", "c", "a")),
(Array[Int](), Array[String]()),
(null, null)
).toDF("a", "b")
checkAnswer(
df.select(sort_array($"a"), sort_array($"b")),
Seq(
Row(Seq(1, 2, 3), Seq("a", "b", "c")),
Row(Seq[Int](), Seq[String]()),
Row(null, null))
)
checkAnswer(
df.select(sort_array($"a", false), sort_array($"b", false)),
Seq(
Row(Seq(3, 2, 1), Seq("c", "b", "a")),
Row(Seq[Int](), Seq[String]()),
Row(null, null))
)
checkAnswer(
df.selectExpr("sort_array(a)", "sort_array(b)"),
Seq(
Row(Seq(1, 2, 3), Seq("a", "b", "c")),
Row(Seq[Int](), Seq[String]()),
Row(null, null))
)
checkAnswer(
df.selectExpr("sort_array(a, true)", "sort_array(b, false)"),
Seq(
Row(Seq(1, 2, 3), Seq("c", "b", "a")),
Row(Seq[Int](), Seq[String]()),
Row(null, null))
)

val df2 = Seq((Array[Array[Int]](Array(2)), "x")).toDF("a", "b")
assert(intercept[AnalysisException] {
df2.selectExpr("sort_array(a)").collect()
}.getMessage().contains("Type ArrayType(IntegerType,false) is not the AtomicType, " +
"we can not perform the ordering operations"))

val df3 = Seq(("xxx", "x")).toDF("a", "b")
assert(intercept[AnalysisException] {
df3.selectExpr("sort_array(a)").collect()
}.getMessage().contains("ArrayType(AtomicType) is expected, but we got StringType"))
}

test("array size function") {
val df = Seq(
(Array[Int](1, 2), "x"),
(Array[Int](), "y"),
(Array[Int](1, 2, 3), "z")
).toDF("a", "b")
checkAnswer(
df.select(size("a")),
df.select(size($"a")),
Seq(Row(2), Row(0), Row(3))
)
checkAnswer(
Expand All @@ -290,7 +337,7 @@ class DataFrameFunctionsSuite extends QueryTest {
(Map[Int, Int](1 -> 1, 2 -> 2, 3 -> 3), "z")
).toDF("a", "b")
checkAnswer(
df.select(size("a")),
df.select(size($"a")),
Seq(Row(2), Row(0), Row(3))
)
checkAnswer(
Expand Down

0 comments on commit 67ad4e2

Please sign in to comment.