Skip to content

Commit

Permalink
update demo and system figures.
Browse files Browse the repository at this point in the history
  • Loading branch information
fuxiaoyi committed Jun 23, 2024
1 parent cdc295a commit fc62c02
Show file tree
Hide file tree
Showing 3 changed files with 3 additions and 3 deletions.
6 changes: 3 additions & 3 deletions README.md
Original file line number Diff line number Diff line change
@@ -1,6 +1,6 @@
# internTA: 基于InternLM2大模型的《合成生物学》助教

<div align="center"><img src="./demo.gif" width="350"></div>
<div align="center"><img src="./demo.gif" width="500"></div>

## 摘要
代码仓库:[[GitHub]](https://github.com/kongfoo-ai/internTA)
Expand All @@ -24,11 +24,11 @@

## 介绍

InternTA使用情景模拟器生成的情景数据作为微调数据集,使用[Xtuner](https://github.com/InternLM/xtuner)工具对[InternLM2-Chat-1.8B-SFT](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b-sft/summary)基础模型进行微调,使用streamlit作为框架开发网页端DEMO应用。
InternTA从《合成生物学》教材中取材,通过半自动化方式产生教学对话作为微调数据集,使用[Xtuner](https://github.com/InternLM/xtuner)工具对[InternLM2-Chat-1.8B-SFT](https://modelscope.cn/models/Shanghai_AI_Laboratory/internlm2-chat-1_8b-sft/summary)基础模型进行微调,使用streamlit作为框架开发网页端DEMO应用。

InternTA的实现原理如下图所示:

<div align="center"><img src="./internTA.png" width="350"></div>
<div align="center"><img src="./internTA.png" width="500"></div>

其中微调数据准备是最为关键的环节之一。我们准备的微调训练数据包含两类:直接问答数据和引导式问答数据。微调数据准备的步骤如下图所示:

Expand Down
Binary file modified demo.gif
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.
Binary file added internTA.png
Loading
Sorry, something went wrong. Reload?
Sorry, we cannot display this file.
Sorry, this file is invalid so it cannot be displayed.

0 comments on commit fc62c02

Please sign in to comment.