Skip to content

Commit

Permalink
MNT: Change DigMontage representation to use Digitization (mne-tools#…
Browse files Browse the repository at this point in the history
…6639)

* WIP: make transformations private [run CIs]

* cosmit and notes

* WIP: move transforms 

This commit corresponds to this PR:
massich#27

* WIP: move the transformations logic into free helper functions (mne-tools#28)

* WIP: Add dig representation

* WIP: Remove transforms from  __init__

See massich#29 for details

* FIX dictionary unpacking

* fix rebase

* WIP: Keep dig and chnames only 

from massich#30

* fix 052193c

* use deprecated property

* wip: make point_names private + property

* wip: remove deprecation warnings

* wip: add ch_names attribute

* wip: do not use point_names in __repr__

* wip: remove _get_dig()

* wip with alex!!!!

* wip: fix wip

* fix pep

* xxxx:

* wip: deprecate compute_dev_head_t

* XXX: update XXX comments

* wip: add meaningful deprecation message

* wip: use new DigMontage constructor

* WIP-TST: deprecated DigMontage contruction

* TST: use atol for dev_head_t testing

* WIP: ADD make_dig_montage (and make it great again)

* wip

* fix tests

* fix test?

* don't copy

* cleanup

* more fixes

* fix

* fix fieldtrip

* FIX: Link

* update whatsnew and trigger CIs

* use master whatsnew

* update the new whatsnew
  • Loading branch information
massich authored and agramfort committed Aug 22, 2019
1 parent 55eac89 commit 0600f81
Show file tree
Hide file tree
Showing 16 changed files with 829 additions and 348 deletions.
2 changes: 2 additions & 0 deletions doc/changes/latest.inc
Original file line number Diff line number Diff line change
Expand Up @@ -15,6 +15,8 @@ Current (0.19.dev0)
Changelog
~~~~~~~~~

- Add :func:`mne.channels.make_dig_montage` to create :class:`mne.channels.DigMontage` objects out of np.arrays by `Joan Massich`_

- Add support for reading in BrainVision CapTrak (BVCT) digitization coordinate files in :func:`mne.channels.read_dig_montage` by `Stefan Appelhoff`_

- Allow :meth:`mne.Annotations.crop` to support negative ``tmin`` and ``tmax`` by `Joan Massich`_
Expand Down
1 change: 1 addition & 0 deletions doc/conf.py
Original file line number Diff line number Diff line change
Expand Up @@ -540,6 +540,7 @@ def reset_warnings(gallery_conf, fname):
'Covariance': 'mne.Covariance', 'Annotations': 'mne.Annotations',
'Montage': 'mne.channels.Montage',
'DigMontage': 'mne.channels.DigMontage',
'Digitization': 'mne.digitization.Digitization',
'VectorSourceEstimate': 'mne.VectorSourceEstimate',
'VolSourceEstimate': 'mne.VolSourceEstimate',
'VolVectorSourceEstimate': 'mne.VolVectorSourceEstimate',
Expand Down
1 change: 1 addition & 0 deletions doc/python_reference.rst
Original file line number Diff line number Diff line change
Expand Up @@ -310,6 +310,7 @@ Projections:
read_montage
get_builtin_montages
read_dig_montage
make_dig_montage
read_layout
find_layout
make_eeg_layout
Expand Down
7 changes: 3 additions & 4 deletions examples/visualization/plot_3d_to_2d.py
Original file line number Diff line number Diff line change
Expand Up @@ -50,9 +50,8 @@
mat = loadmat(path_data)
ch_names = mat['ch_names'].tolist()
elec = mat['elec'] # electrode coordinates in meters
dig_ch_pos = dict(zip(ch_names, elec))
mon = mne.channels.DigMontage(dig_ch_pos=dig_ch_pos)
info = mne.create_info(ch_names, 1000., 'ecog', montage=mon)
montage = mne.channels.make_dig_montage(ch_pos=dict(zip(ch_names, elec)))
info = mne.create_info(ch_names, 1000., 'ecog', montage=montage)
print('Created %s channel positions' % len(ch_names))

###############################################################################
Expand All @@ -67,7 +66,7 @@
fig = plot_alignment(info, subject='sample', subjects_dir=subjects_dir,
surfaces=['pial'], meg=False)
set_3d_view(figure=fig, azimuth=200, elevation=70)
xy, im = snapshot_brain_montage(fig, mon)
xy, im = snapshot_brain_montage(fig, montage)

# Convert from a dictionary to array to plot
xy_pts = np.vstack([xy[ch] for ch in info['ch_names']])
Expand Down
2 changes: 1 addition & 1 deletion mne/channels/__init__.py
Original file line number Diff line number Diff line change
Expand Up @@ -6,7 +6,7 @@
from .layout import (Layout, make_eeg_layout, make_grid_layout, read_layout,
find_layout, generate_2d_layout)
from .montage import (read_montage, read_dig_montage, Montage, DigMontage,
get_builtin_montages)
get_builtin_montages, make_dig_montage)
from .channels import (equalize_channels, rename_channels, fix_mag_coil_types,
read_ch_connectivity, _get_ch_type,
find_ch_connectivity, make_1020_channel_selections)
306 changes: 306 additions & 0 deletions mne/channels/_dig_montage_utils.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,306 @@
# Authors: Alexandre Gramfort <[email protected]>
# Denis Engemann <[email protected]>
# Martin Luessi <[email protected]>
# Eric Larson <[email protected]>
# Marijn van Vliet <[email protected]>
# Jona Sassenhagen <[email protected]>
# Teon Brooks <[email protected]>
# Christian Brodbeck <[email protected]>
# Stefan Appelhoff <[email protected]>
# Joan Massich <[email protected]>
#
# License: Simplified BSD

import xml.etree.ElementTree as ElementTree

import numpy as np

from ..transforms import apply_trans, get_ras_to_neuromag_trans

from ..io.constants import FIFF
from ..io.open import fiff_open
from ..digitization._utils import _read_dig_fif
from ..utils import _check_fname, Bunch, warn


def _fix_data_fiducials(data):
nasion, rpa, lpa = data.nasion, data.rpa, data.lpa
if any(x is None for x in (nasion, rpa, lpa)):
if data.elp is None or data.point_names is None:
raise ValueError('ELP points and names must be specified for '
'transformation.')
names = [name.lower() for name in data.point_names]

# check that all needed points are present
kinds = ('nasion', 'lpa', 'rpa')
missing = [name for name in kinds if name not in names]
if len(missing) > 0:
raise ValueError('The points %s are missing, but are needed '
'to transform the points to the MNE '
'coordinate system. Either add the points, '
'or read the montage with transform=False.'
% str(missing))

data.nasion, data.lpa, data.rpa = [
data.elp[names.index(kind)] for kind in kinds
]

# remove fiducials from elp
mask = np.ones(len(names), dtype=bool)
for fid in ['nasion', 'lpa', 'rpa']:
mask[names.index(fid)] = False
data.elp = data.elp[mask]
data.point_names = [p for pi, p in enumerate(data.point_names)
if mask[pi]]
return data


def _transform_to_head_call(data):
"""Transform digitizer points to Neuromag head coordinates.
Parameters
----------
data : Bunch.
replicates DigMontage old structure. Requires the following fields:
['nasion', 'lpa', 'rpa', 'hsp', 'hpi', 'elp', 'coord_frame',
'dig_ch_pos']
Returns
-------
data : Bunch.
transformed version of input data.
"""
if data.coord_frame == 'head': # nothing to do
return data
nasion, rpa, lpa = data.nasion, data.rpa, data.lpa

native_head_t = get_ras_to_neuromag_trans(nasion, lpa, rpa)
data.nasion, data.lpa, data.rpa = apply_trans(
native_head_t, np.array([nasion, lpa, rpa]))
if data.elp is not None:
data.elp = apply_trans(native_head_t, data.elp)
if data.hsp is not None:
data.hsp = apply_trans(native_head_t, data.hsp)
if data.dig_ch_pos is not None:
for key, val in data.dig_ch_pos.items():
data.dig_ch_pos[key] = apply_trans(native_head_t, val)
data.coord_frame = 'head'

return data


_cardinal_ident_mapping = {
FIFF.FIFFV_POINT_NASION: 'nasion',
FIFF.FIFFV_POINT_LPA: 'lpa',
FIFF.FIFFV_POINT_RPA: 'rpa',
}


def _read_dig_montage_fif(
fname,
_raise_transform_err,
_all_data_kwargs_are_none,
):
from .montage import _check_frame # circular dep

if _raise_transform_err:
raise ValueError('transform must be True and dev_head_t must be '
'False for FIF dig montage')
if not _all_data_kwargs_are_none:
raise ValueError('hsp, hpi, elp, point_names, egi must all be '
'None if fif is not None')

_check_fname(fname, overwrite='read', must_exist=True)
# Load the dig data
f, tree = fiff_open(fname)[:2]
with f as fid:
dig = _read_dig_fif(fid, tree)

# Split up the dig points by category
hsp = list()
hpi = list()
elp = list()
point_names = list()
fids = dict()
dig_ch_pos = dict()
for d in dig:
if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
_check_frame(d, 'head')
fids[_cardinal_ident_mapping[d['ident']]] = d['r']
elif d['kind'] == FIFF.FIFFV_POINT_HPI:
_check_frame(d, 'head')
hpi.append(d['r'])
elp.append(d['r'])
point_names.append('HPI%03d' % d['ident'])
elif d['kind'] == FIFF.FIFFV_POINT_EXTRA:
_check_frame(d, 'head')
hsp.append(d['r'])
elif d['kind'] == FIFF.FIFFV_POINT_EEG:
_check_frame(d, 'head')
dig_ch_pos['EEG%03d' % d['ident']] = d['r']

return Bunch(
nasion=fids['nasion'], lpa=fids['lpa'], rpa=fids['rpa'],
hsp=np.array(hsp) if len(hsp) else None,
hpi=hpi, # XXX: why this is returned as empty list instead of None?
elp=np.array(elp) if len(elp) else None,
point_names=point_names,
dig_ch_pos=dig_ch_pos,
coord_frame='head',
)


def _read_dig_montage_egi(
fname,
_scaling,
_all_data_kwargs_are_none,
):

if not _all_data_kwargs_are_none:
raise ValueError('hsp, hpi, elp, point_names, fif must all be '
'None if egi is not None')
_check_fname(fname, overwrite='read', must_exist=True)

root = ElementTree.parse(fname).getroot()
ns = root.tag[root.tag.index('{'):root.tag.index('}') + 1]
sensors = root.find('%ssensorLayout/%ssensors' % (ns, ns))
fids = dict()
dig_ch_pos = dict()

fid_name_map = {'Nasion': 'nasion',
'Right periauricular point': 'rpa',
'Left periauricular point': 'lpa'}

for s in sensors:
name, number, kind = s[0].text, int(s[1].text), int(s[2].text)
coordinates = np.array([float(s[3].text), float(s[4].text),
float(s[5].text)])

coordinates *= _scaling

# EEG Channels
if kind == 0:
dig_ch_pos['EEG %03d' % number] = coordinates
# Reference
elif kind == 1:
dig_ch_pos['EEG %03d' %
(len(dig_ch_pos.keys()) + 1)] = coordinates
# XXX: we should do something with this (ref and eeg get mixed)

# Fiducials
elif kind == 2:
fid_name = fid_name_map[name]
fids[fid_name] = coordinates
# Unknown
else:
warn('Unknown sensor type %s detected. Skipping sensor...'
'Proceed with caution!' % kind)

return Bunch(
# EGI stuff
nasion=fids['nasion'], lpa=fids['lpa'], rpa=fids['rpa'],
dig_ch_pos=dig_ch_pos, coord_frame='unknown',
# not EGI stuff
hsp=None, hpi=None, elp=None, point_names=None,
)


def _foo_get_data_from_dig(dig):
# XXXX:
# This does something really similar to _read_dig_montage_fif but:
# - does not check coord_frame
# - does not do any operation that implies assumptions with the names

# Split up the dig points by category
hsp, hpi, elp = list(), list(), list()
fids, dig_ch_pos_location = dict(), list()

for d in dig:
if d['kind'] == FIFF.FIFFV_POINT_CARDINAL:
fids[_cardinal_ident_mapping[d['ident']]] = d['r']
elif d['kind'] == FIFF.FIFFV_POINT_HPI:
hpi.append(d['r'])
elp.append(d['r'])
# XXX: point_names.append('HPI%03d' % d['ident'])
elif d['kind'] == FIFF.FIFFV_POINT_EXTRA:
hsp.append(d['r'])
elif d['kind'] == FIFF.FIFFV_POINT_EEG:
# XXX: dig_ch_pos['EEG%03d' % d['ident']] = d['r']
dig_ch_pos_location.append(d['r'])

dig_coord_frames = set([d['coord_frame'] for d in dig])
assert len(dig_coord_frames) == 1, 'Only single coordinate frame in dig is supported' # noqa # XXX

return Bunch(
nasion=fids.get('nasion', None),
lpa=fids.get('lpa', None),
rpa=fids.get('rpa', None),
hsp=np.array(hsp) if len(hsp) else None,
hpi=np.array(hpi) if len(hpi) else None,
elp=np.array(elp) if len(elp) else None,
dig_ch_pos_location=dig_ch_pos_location,
coord_frame=dig_coord_frames.pop(),
)


def _read_dig_montage_bvct(
fname,
unit,
_all_data_kwargs_are_none,
):

if not _all_data_kwargs_are_none:
raise ValueError('hsp, hpi, elp, point_names, fif must all be '
'None if egi is not None')
_check_fname(fname, overwrite='read', must_exist=True)

# CapTrak is natively in mm
scale = dict(mm=1e-3, cm=1e-2, auto=1e-3, m=1)
if unit not in scale:
raise ValueError("Unit needs to be one of %s, not %r" %
(sorted(scale.keys()), unit))
if unit not in ['mm', 'auto']:
warn('Using "{}" as unit for BVCT file. BVCT files are usually '
'specified in "mm". This might lead to errors.'.format(unit),
RuntimeWarning)

root = ElementTree.parse(fname).getroot()
sensors = root.find('CapTrakElectrodeList')

fids = {}
dig_ch_pos = {}

fid_name_map = {'Nasion': 'nasion', 'RPA': 'rpa', 'LPA': 'lpa'}

for s in sensors:
name = s.find('Name').text

# Need to prune "GND" and "REF": these are not included in the raw
# data and will raise errors when we try to do raw.set_montage(...)
# XXX eventually this should be stored in ch['loc'][3:6]
# but we don't currently have such capabilities here
if name in ['GND', 'REF']:
continue

fid = name in fid_name_map
coordinates = np.array([float(s.find('X').text),
float(s.find('Y').text),
float(s.find('Z').text)])

coordinates *= scale[unit]

# Fiducials
if fid:
fid_name = fid_name_map[name]
fids[fid_name] = coordinates
# EEG Channels
else:
dig_ch_pos[name] = coordinates

return Bunch(
# BVCT stuff
nasion=fids['nasion'], lpa=fids['lpa'], rpa=fids['rpa'],
dig_ch_pos=dig_ch_pos, coord_frame='unknown',
# not BVCT stuff
hsp=None, hpi=None, elp=None, point_names=None,
)
Loading

0 comments on commit 0600f81

Please sign in to comment.