forked from mne-tools/mne-python
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
[MRG] Conversion of somato data to BIDS (mne-tools#6414)
* adjust freq tut * adjust dics exp * adjust global field power exp * temporarily change hash and url for somato * make more use of subj variable * use v2 of somato bids set * ignore long lines due to links in rst * fix typo * add somato url from MNE osf repo * fix sphinx rst links * update examples for new formatting, no new data yet * update to most recent somato data * update * fix path * fix rst link * subj --> subject
- Loading branch information
1 parent
988653c
commit 3acb8dc
Showing
5 changed files
with
45 additions
and
22 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,8 +8,7 @@ | |
Compute a Dynamic Imaging of Coherent Sources (DICS) [1]_ filter from | ||
single-trial activity to estimate source power across a frequency band. This | ||
example demonstrates how to source localize the event-related synchronization | ||
(ERS) of beta band activity in the "somato" dataset. | ||
(ERS) of beta band activity in this dataset: :ref:`somato-dataset` | ||
References | ||
---------- | ||
|
@@ -19,8 +18,11 @@ | |
# Author: Marijn van Vliet <[email protected]> | ||
# Roman Goj <[email protected]> | ||
# Denis Engemann <[email protected]> | ||
# Stefan Appelhoff <[email protected]> | ||
# | ||
# License: BSD (3-clause) | ||
import os.path as op | ||
|
||
import numpy as np | ||
import mne | ||
from mne.datasets import somato | ||
|
@@ -32,9 +34,10 @@ | |
############################################################################### | ||
# Reading the raw data and creating epochs: | ||
data_path = somato.data_path() | ||
raw_fname = data_path + '/MEG/somato/sef_raw_sss.fif' | ||
fname_fwd = data_path + '/MEG/somato/somato-meg-oct-6-fwd.fif' | ||
subjects_dir = data_path + '/subjects' | ||
subject = '01' | ||
task = 'somato' | ||
raw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg', | ||
'sub-{}_task-{}_meg.fif'.format(subject, task)) | ||
|
||
raw = mne.io.read_raw_fif(raw_fname) | ||
|
||
|
@@ -46,7 +49,11 @@ | |
epochs = mne.Epochs(raw, events, event_id=1, tmin=-1.5, tmax=2, picks=picks, | ||
preload=True) | ||
|
||
# Read forward operator | ||
# Read forward operator and point to freesurfer subject directory | ||
fname_fwd = op.join(data_path, 'derivatives', 'sub-{}'.format(subject), | ||
'sub-{}_task-{}-fwd.fif'.format(subject, task)) | ||
subjects_dir = op.join(data_path, 'derivatives', 'freesurfer', 'subjects') | ||
|
||
fwd = mne.read_forward_solution(fname_fwd) | ||
|
||
############################################################################### | ||
|
@@ -79,4 +86,4 @@ | |
stc = beta_source_power / baseline_source_power | ||
message = 'DICS source power in the 12-30 Hz frequency band' | ||
brain = stc.plot(hemi='both', views='par', subjects_dir=subjects_dir, | ||
time_label=message) | ||
subject=subject, time_label=message) |
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -27,6 +27,8 @@ | |
importantly, the clear-cut comparability of the spectral decomposition (the | ||
same type of filter is used across all bands). | ||
We will use this dataset: :ref:`somato-dataset` | ||
References | ||
---------- | ||
|
@@ -38,10 +40,12 @@ | |
vol. 108, 328-342, NeuroImage. | ||
.. [3] Efron B. and Hastie T. Computer Age Statistical Inference (2016). | ||
Cambrdige University Press, Chapter 11.2. | ||
""" | ||
""" # noqa: E501 | ||
# Authors: Denis A. Engemann <[email protected]> | ||
# Stefan Appelhoff <[email protected]> | ||
# | ||
# License: BSD (3-clause) | ||
import os.path as op | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
@@ -54,7 +58,10 @@ | |
############################################################################### | ||
# Set parameters | ||
data_path = somato.data_path() | ||
raw_fname = data_path + '/MEG/somato/sef_raw_sss.fif' | ||
subject = '01' | ||
task = 'somato' | ||
raw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg', | ||
'sub-{}_task-{}_meg.fif'.format(subject, task)) | ||
|
||
# let's explore some frequency bands | ||
iter_freqs = [ | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -2,6 +2,7 @@ | |
# Martin Luessi <[email protected]> | ||
# Eric Larson <[email protected]> | ||
# Denis Egnemann <[email protected]> | ||
# Stefan Appelhoff <[email protected]> | ||
# License: BSD Style. | ||
|
||
from collections import OrderedDict | ||
|
@@ -237,10 +238,10 @@ def _data_path(path=None, force_update=False, update_path=True, download=True, | |
# To update the testing or misc dataset, push commits, then make a new | ||
# release on GitHub. Then update the "releases" variable: | ||
releases = dict(testing='0.67', misc='0.3') | ||
# And also update the "hashes['testing']" variable below. | ||
# And also update the "md5_hashes['testing']" variable below. | ||
|
||
# To update any other dataset, update the data archive itself (upload | ||
# an updated version) and update the hash. | ||
# an updated version) and update the md5 hash. | ||
|
||
# try to match url->archive_name->folder_name | ||
urls = dict( # the URLs to use | ||
|
@@ -254,8 +255,8 @@ def _data_path(path=None, force_update=False, update_path=True, download=True, | |
'datasets/foo.tgz', | ||
misc='https://codeload.github.com/mne-tools/mne-misc-data/' | ||
'tar.gz/%s' % releases['misc'], | ||
sample="https://osf.io/86qa2/download?version=4", | ||
somato='https://osf.io/tp4sg/download?version=2', | ||
sample='https://osf.io/86qa2/download?version=4', | ||
somato='https://osf.io/tp4sg/download?version=5', | ||
spm='https://osf.io/je4s8/download?version=2', | ||
testing='https://codeload.github.com/mne-tools/mne-testing-data/' | ||
'tar.gz/%s' % releases['testing'], | ||
|
@@ -306,7 +307,7 @@ def _data_path(path=None, force_update=False, update_path=True, download=True, | |
fieldtrip_cmc='MNE-fieldtrip_cmc-data', | ||
phantom_4dbti='MNE-phantom-4DBTi', | ||
) | ||
hashes = dict( | ||
md5_hashes = dict( | ||
brainstorm=dict( | ||
bst_auditory='fa371a889a5688258896bfa29dd1700b', | ||
bst_phantom_ctf='80819cb7f5b92d1a5289db3fb6acb33c', | ||
|
@@ -316,7 +317,7 @@ def _data_path(path=None, force_update=False, update_path=True, download=True, | |
fake='3194e9f7b46039bb050a74f3e1ae9908', | ||
misc='d822a720ef94302467cb6ad1d320b669', | ||
sample='fc2d5b9eb0a144b1d6ba84dc3b983602', | ||
somato='77a7601948c9e38d2da52446e2eab10f', | ||
somato='f08f17924e23c57a751b3bed4a05fe02', | ||
spm='9f43f67150e3b694b523a21eb929ea75', | ||
testing='9bc5543854737f32d426629b31ea85d7', | ||
multimodal='26ec847ae9ab80f58f204d09e2c08367', | ||
|
@@ -328,9 +329,9 @@ def _data_path(path=None, force_update=False, update_path=True, download=True, | |
fieldtrip_cmc='6f9fd6520f9a66e20994423808d2528c', | ||
phantom_4dbti='f1d96f81d46480d0cc52a7ba4f125367' | ||
) | ||
assert set(hashes.keys()) == set(urls.keys()) | ||
assert set(md5_hashes.keys()) == set(urls.keys()) | ||
url = urls[name] | ||
hash_ = hashes[name] | ||
hash_ = md5_hashes[name] | ||
folder_orig = folder_origs.get(name, None) | ||
if name == 'brainstorm': | ||
assert archive_name is not None | ||
|
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
|
@@ -8,10 +8,14 @@ | |
The objective is to show you how to explore the spectral content | ||
of your data (frequency and time-frequency). Here we'll work on Epochs. | ||
We will use the somatosensory dataset that contains so-called | ||
event related synchronizations (ERS) / desynchronizations (ERD) in | ||
the beta band. | ||
""" | ||
We will use this dataset: :ref:`somato-dataset`. It contains so-called event | ||
related synchronizations (ERS) / desynchronizations (ERD) in the beta band. | ||
""" # noqa: E501 | ||
# Authors: Alexandre Gramfort <[email protected]> | ||
# Stefan Appelhoff <[email protected]> | ||
# | ||
# License: BSD (3-clause) | ||
import os.path as op | ||
|
||
import numpy as np | ||
import matplotlib.pyplot as plt | ||
|
@@ -23,7 +27,10 @@ | |
############################################################################### | ||
# Set parameters | ||
data_path = somato.data_path() | ||
raw_fname = data_path + '/MEG/somato/sef_raw_sss.fif' | ||
subject = '01' | ||
task = 'somato' | ||
raw_fname = op.join(data_path, 'sub-{}'.format(subject), 'meg', | ||
'sub-{}_task-{}_meg.fif'.format(subject, task)) | ||
|
||
# Setup for reading the raw data | ||
raw = mne.io.read_raw_fif(raw_fname) | ||
|