Skip to content

npm module for interacting with the Urbit constitution

License

Notifications You must be signed in to change notification settings

kravets/constitution-js

 
 

Repository files navigation

constitution-js

MIT License

Interact with the Urbit constitution from Javascript.

Install

Clone the repo, then do a simple:

npm install --save

Older versions are on npm. This one will show up soon.

API Reference

./docs/

Usage

Require the library via something like:

const cjs = require('constitution-js');

In general: use the functions in cjs.constitution, cjs.ships, cjs.polls, and cjs.pool to interact with the corresponding Ethereum contracts. Use cjs.check to verify any required state is what you expect it to be. cjs.txn contains functions for signing and sending transactions, and cjs.utils mostly re-exports useful utility functions from ethereumjs-util.

You might want to define something like the following, for convenience:

const constitution = cjs.constitution;
const ships = cjs.ships;
const check = cjs.check;
const txn = cjs.txn

The library exposes a purely-functional API. This means you'll have to supply your own state (e.g. web3 instance, contracts instance) whenever dealing with transactions and contract initialisation. For example, when running a fresh local Ganache node with the appropriate mnemonic (see below), this will get you set up:

const Web3 = require('web3');

let provider = new Web3.providers.HttpProvider('http://localhost:8545');
let web3 = new Web3(provider);

let contractAddresses = {
    constitution: '0x56db68f29203ff44a803faa2404a44ecbb7a7480',
    ships: '0x863d9c2e5c4c133596cfac29d55255f0d0f86381',
    polls: '0x935452c45eda2958976a429c9733c40302995efd',
    pool: '0xb71c0b6cee1bcae56dfe95cd9d3e41ddd7eafc43'
  }

let contracts = cjs.initContracts(web3, contractAddresses);

Note that the web3 object is passed to cjs.initContracts explicitly. Aside from contract initialisation, this is typically only required when sending transactions (more below).

When interacting with the contract APIs, on the other hand, you'll almost always have to pass a contracts object explicitly. For example:

// constitution owner
const owner = '0x6deffb0cafdb11d175f123f6891aa64f01c24f7d';

const galaxy = 42;

check.canCreateGalaxy(contracts, galaxy, owner);

Note that the 'contracts' object initialised previously is passed as the first argument. Again, this is almost always the case.

Most of the exposed contracts API consists of functions that, at most, read from the Ethereum chain state, returning some result in a Promise. The primary exceptions are some of the functions in the 'constitution' and 'pool' contracts; for those that modify chain state, the function will return a transaction object, e.g.:

let tx = constitution.createGalaxy(contracts, galaxy, owner);

To modify contract state, you'll have to sign ('signTransaction') and send ('sendSignedTransaction') the transaction explicitly. For example:

txn.signTransaction(web3, tx, pk).then(stx =>
  txn.sendSignedTransaction(web3, stx));

or, in the body of an async function, you can use await:

let stx = await txn.signTransaction(web3, tx, pk);
txn.sendSignedTransaction(web3, stx);

Note again that, when dealing with transactions, a web3 object must be passed as the first argument.

Many of the functions for the 'ships' contract will work when the function is passed either a ship identifier (i.e. an unsigned integer), meaning the computation will be carried out on-chain, or a ship object (i.e. something that has been retrieved via 'ships.getShip'), meaning the computation will be carried out purely, simply by reference to the ship object. The result is wrapped in a Promise, in either case.

Functions that use Web3 may throw. The thrown object will always contain at least 'name' and 'message' properties. Tread carefully when using Web3 while offline.

Contract action checks ('canXYZ') return result objects in the form of { result: bool, reason: string }, where 'reason' is only set when 'result' is 'false'. These can't resolve when offline.

Development

Library Structure

The modules found in the internal directory are intended to be fairly close mappings to the public, external, or view functions located in the contracts themselves. Mostly these are re-exported via the user-facing API, defined in constitution.js, pool.js, and so on.

The one notable exception is in the ships module, where the behaviour of a function can often depend on the type of the argument passed to it. If one passes them a cached ship object (retrieved via getShip), then these functions will compute their values locally; if one supplies them with a ship token (i.e., an integer), they will instead hit the network.

Local Testnet

For debugging and running the tests, you'll need a local testnet running the Urbit constitution.

  1. Clone the constitution
  2. cd into the repo and npm install
  3. npm install -g ganache-cli
  4. Run a local ganache node, boot using the following command to ensure a matching seed: ganache-cli -m "benefit crew supreme gesture quantum web media hazard theory mercy wing kitten"
  5. Run truffle deploy from the constitution's directory to deploy to your local node.

Useful addresses

Constitution owner (is allowed to create galaxies): 0x6deffb0cafdb11d175f123f6891aa64f01c24f7d

Test pool: 0xb71c0b6cee1bcae56dfe95cd9d3e41ddd7eafc43

Test

Make sure a local testnet is running, and then do:

npm test

About

npm module for interacting with the Urbit constitution

Resources

License

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • JavaScript 100.0%