Skip to content

Commit

Permalink
Initial commit
Browse files Browse the repository at this point in the history
  • Loading branch information
arunmallya committed Feb 21, 2018
1 parent 6ce9120 commit 3529efd
Show file tree
Hide file tree
Showing 16 changed files with 1,867 additions and 0 deletions.
Empty file added checkpoints/.keep
Empty file.
Empty file added data/.keep
Empty file.
14 changes: 14 additions & 0 deletions src/best_models/densenet121_binary.txt
Original file line number Diff line number Diff line change
@@ -0,0 +1,14 @@
################################################################################
# DenseNet-121 Errors:
################################################################################
# CUBS: 19.24
# Stanford Cars: 10.62
# Flowers: 4.91
# Wikiart: 29.33
# Sketch: 20.05
################################################################################
cubs_cropped: ../checkpoints/cubs_cropped/final/densenet121_binarizer_maskscale1e-2-none_lr1e-4-1e-4_decay15-15_2.pt.pt
stanford_cars_cropped: ../checkpoints/stanford_cars_cropped/final/densenet121_binarizer_maskscale1e-2-none_lr1e-4-1e-4_decay15-15_2.pt.pt
flowers: ../checkpoints/flowers/final/densenet121_binarizer_maskscale1e-2-none_lr1e-4-1e-4_decay15-15_3.pt.pt
wikiart: ../checkpoints/wikiart/final/densenet121_binarizer_maskscale1e-2-none_lr1e-4-1e-4_decay15-15_1.pt.pt
sketches: ../checkpoints/sketches/final/densenet121_binarizer_maskscale1e-2-none_lr1e-4-1e-4_decay15-15_1.pt.pt
145 changes: 145 additions & 0 deletions src/dataset.py
Original file line number Diff line number Diff line change
@@ -0,0 +1,145 @@
import collections
import glob
import os

import numpy as np
from PIL import Image

import torch
import torch.backends.cudnn as cudnn
import torch.nn as nn
import torch.nn.parallel
import torch.optim as optim
import torch.utils.data as data
import torchvision.datasets as datasets
import torchvision.models as models
import torchvision.transforms as transforms


def train_loader(path, batch_size, num_workers=4, pin_memory=False, normalize=None):
if normalize is None:
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
return data.DataLoader(
datasets.ImageFolder(path,
transforms.Compose([
transforms.Scale(256),
transforms.RandomSizedCrop(224),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=pin_memory)


def test_loader(path, batch_size, num_workers=4, pin_memory=False, normalize=None):
if normalize is None:
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
return data.DataLoader(
datasets.ImageFolder(path,
transforms.Compose([
transforms.Scale(256),
transforms.CenterCrop(224),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory)


def test_loader_caffe(path, batch_size, num_workers=4, pin_memory=False):
"""Legacy loader for caffe. Used with models loaded from caffe."""
# Returns images in 256 x 256 to subtract given mean of same size.
return data.DataLoader(
datasets.ImageFolder(path,
transforms.Compose([
Scale((256, 256)),
# transforms.CenterCrop(224),
transforms.ToTensor(),
])),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory)


def train_loader_cropped(path, batch_size, num_workers=4, pin_memory=False):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
return data.DataLoader(
datasets.ImageFolder(path,
transforms.Compose([
Scale((224, 224)),
transforms.RandomHorizontalFlip(),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size,
shuffle=True,
num_workers=num_workers,
pin_memory=pin_memory)


def test_loader_cropped(path, batch_size, num_workers=4, pin_memory=False):
normalize = transforms.Normalize(
mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225])
return data.DataLoader(
datasets.ImageFolder(path,
transforms.Compose([
Scale((224, 224)),
transforms.ToTensor(),
normalize,
])),
batch_size=batch_size,
shuffle=False,
num_workers=num_workers,
pin_memory=pin_memory)


# Note: This might not be needed anymore given that this functionality exists in
# the newer PyTorch versions.
class Scale(object):
"""Rescale the input PIL.Image to the given size.
Args:
size (sequence or int): Desired output size. If size is a sequence like
(w, h), output size will be matched to this. If size is an int,
smaller edge of the image will be matched to this number.
i.e, if height > width, then image will be rescaled to
(size * height / width, size)
interpolation (int, optional): Desired interpolation. Default is
``PIL.Image.BILINEAR``
"""

def __init__(self, size, interpolation=Image.BILINEAR):
assert isinstance(size, int) or (isinstance(
size, collections.Iterable) and len(size) == 2)
self.size = size
self.interpolation = interpolation

def __call__(self, img):
"""
Args:
img (PIL.Image): Image to be scaled.
Returns:
PIL.Image: Rescaled image.
"""
if isinstance(self.size, int):
w, h = img.size
if (w <= h and w == self.size) or (h <= w and h == self.size):
return img
if w < h:
ow = self.size
oh = int(self.size * h / w)
return img.resize((ow, oh), self.interpolation)
else:
oh = self.size
ow = int(self.size * w / h)
return img.resize((ow, oh), self.interpolation)
else:
return img.resize(self.size, self.interpolation)
Loading

0 comments on commit 3529efd

Please sign in to comment.