Skip to content

MNIST example in PyTorch and TensorFlow Eager mode; with comments & interactive interface

Notifications You must be signed in to change notification settings

kuo348/MNIST-pytorch-tensorflow-eager-interactive

 
 

Folders and files

NameName
Last commit message
Last commit date

Latest commit

 

History

20 Commits
 
 
 
 
 
 
 
 
 
 
 
 

Repository files navigation

MNIST Interactive Examples in PyTorch & TensorFlow Eager Mode

Modified from PyTorch MNIST official example. Recreated with TensorFlow under eager execution mode. With detailed comments & interactive interface.

深度學習新手村:PyTorch入門(中文)

Structure

pytorch/
  train.py            # Train the model
  model.py            # The defined model
  app.py              # Interactive predictor
  model               # Pretrained model, will be overriden when you start training
  test_n.png          # Sample images for the use of interactive predictor
  
tensorflow_eager/
  train.py            # Train the model
  model.py            # The defined model
  app.py              # Interactive predictor
  checkpoint, ckpt-*  # Pretrained model, the number after prefix is the final training step
  test_n.png          # Sample images for the use of interactive predictor

Usage

# clone project
$ git clone https://github.com/pyliaorachel/pytorch-mnist-interactive.git
$ cd MNIST-pytorch-tensorflow-eager-interactive

# install dependencies
$ pip3 install -r requirements.txt

# train & test model
$ python3 -m pytorch.train
# ...data will be fetched to ../data/
# ...trained model will be saved to ./pytorch/model
# or
$ python3 -m tensorflow_eager.train
# ...data will be fetched to somewhere
# ...trained model will be saved to ./tensorflow_eager/checkpoint & ./tensorflow_eager/ckpt-*

# test model interactively
$ python3 -m pytorch.app --image=<path-to-image>
# or
$ python3 -m tensorflow_eager.app --image=<path-to-image>

Experiments

Machine Settings
OS CPU Memory
MacOS 10.12.4 2 GHz Intel Core i5 16 GB 1867 MHz LPDDR3
Results
TensorFlow Eager PyTorch
Time real 6m4.446s
user 13m42.909s
sys 1m54.327s
real 3m59.340s
user 3m28.285s
sys 0m57.395s
Avg. Loss (Test) 0.0610 0.0473
Accuracy 9856/10000 (99%) 9845/10000 (98%)

Avg. Loss and Accuracy are expected to be more or less the same. PyTorch is half the time of TensorFlow's on CPU, while the code complexity is the same.

About

MNIST example in PyTorch and TensorFlow Eager mode; with comments & interactive interface

Resources

Stars

Watchers

Forks

Releases

No releases published

Packages

No packages published

Languages

  • Python 100.0%