forked from MenghaoGuo/Awesome-Vision-Attentions
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Merge pull request MenghaoGuo#18 from uyzhang/main
update triplet_attention
- Loading branch information
Showing
1 changed file
with
103 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,103 @@ | ||
# Rotate to attend: Convolutional triplet attention module (WACV 2021) | ||
import jittor as jt | ||
from jittor import nn | ||
|
||
|
||
class BasicConv(nn.Module): | ||
def __init__( | ||
self, | ||
in_planes, | ||
out_planes, | ||
kernel_size, | ||
stride=1, | ||
padding=0, | ||
dilation=1, | ||
groups=1, | ||
relu=True, | ||
bn=True, | ||
bias=False, | ||
): | ||
super(BasicConv, self).__init__() | ||
self.out_channels = out_planes | ||
self.conv = nn.Conv2d( | ||
in_planes, | ||
out_planes, | ||
kernel_size=kernel_size, | ||
stride=stride, | ||
padding=padding, | ||
dilation=dilation, | ||
groups=groups, | ||
bias=bias, | ||
) | ||
self.bn = ( | ||
nn.BatchNorm2d(out_planes, eps=1e-5, momentum=0.01, affine=True) | ||
if bn | ||
else None | ||
) | ||
self.relu = nn.ReLU() if relu else None | ||
|
||
def execute(self, x): | ||
x = self.conv(x) | ||
if self.bn is not None: | ||
x = self.bn(x) | ||
if self.relu is not None: | ||
x = self.relu(x) | ||
return x | ||
|
||
|
||
class ZPool(nn.Module): | ||
def execute(self, x): | ||
return jt.concat( | ||
(x.max(1).unsqueeze(1), x.mean(1).unsqueeze(1)), dim=1 | ||
) | ||
|
||
|
||
class AttentionGate(nn.Module): | ||
def __init__(self): | ||
super(AttentionGate, self).__init__() | ||
kernel_size = 7 | ||
self.compress = ZPool() | ||
self.conv = BasicConv( | ||
2, 1, kernel_size, stride=1, padding=(kernel_size - 1) // 2, relu=False | ||
) | ||
|
||
def execute(self, x): | ||
x_compress = self.compress(x) | ||
x_out = self.conv(x_compress) | ||
scale = x_out.sigmoid() | ||
return x * scale | ||
|
||
|
||
class TripletAttention(nn.Module): | ||
def __init__(self, no_spatial=False): | ||
super(TripletAttention, self).__init__() | ||
self.cw = AttentionGate() | ||
self.hc = AttentionGate() | ||
self.no_spatial = no_spatial | ||
if not no_spatial: | ||
self.hw = AttentionGate() | ||
|
||
def execute(self, x): | ||
x_perm1 = x.permute(0, 2, 1, 3) | ||
x_out1 = self.cw(x_perm1) | ||
x_out11 = x_out1.permute(0, 2, 1, 3) | ||
x_perm2 = x.permute(0, 3, 2, 1) | ||
x_out2 = self.hc(x_perm2) | ||
x_out21 = x_out2.permute(0, 3, 2, 1) | ||
if not self.no_spatial: | ||
x_out = self.hw(x) | ||
x_out = 1 / 3 * (x_out + x_out11 + x_out21) | ||
else: | ||
x_out = 1 / 2 * (x_out11 + x_out21) | ||
return x_out | ||
|
||
|
||
def main(): | ||
attention_block = TripletAttention() | ||
input = jt.ones([4, 64, 32, 32]) | ||
output = attention_block(input) | ||
print(input.size(), output.size()) | ||
|
||
|
||
if __name__ == '__main__': | ||
main() |