forked from MenghaoGuo/Awesome-Vision-Attentions
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
Showing
1 changed file
with
94 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,94 @@ | ||
import jittor as jt | ||
import jittor.nn as nn | ||
|
||
class BasicConv(nn.Module): | ||
def __init__(self, in_planes, out_planes, kernel_size, stride=1, padding=0, dilation=1, groups=1, relu=True, bn=True, bias=False): | ||
super(BasicConv, self).__init__() | ||
self.out_channels = out_planes | ||
self.conv = nn.Conv2d(in_planes, out_planes, kernel_size=kernel_size, stride=stride, padding=padding, dilation=dilation, groups=groups, bias=bias) | ||
self.bn = nn.BatchNorm2d(out_planes,eps=1e-5, momentum=0.01, affine=True) if bn else None | ||
self.relu = nn.ReLU() if relu else None | ||
|
||
def execute(self, x): | ||
x = self.conv(x) | ||
if self.bn is not None: | ||
x = self.bn(x) | ||
if self.relu is not None: | ||
x = self.relu(x) | ||
return x | ||
|
||
|
||
class ChannelGate(nn.Module): | ||
def __init__(self, channel, reduction=16): | ||
super(ChannelGate, self).__init__() | ||
self.avg_pool = nn.AdaptiveAvgPool2d(1) | ||
self.fc_avg = nn.Sequential( | ||
nn.Linear(channel, channel // reduction, bias=False), | ||
nn.ReLU(), | ||
nn.Linear(channel // reduction, channel, bias=False), | ||
) | ||
self.max_pool = nn.AdaptiveMaxPool2d(1) | ||
self.fc_max = nn.Sequential( | ||
nn.Linear(channel, channel // reduction, bias=False), | ||
nn.ReLU(), | ||
nn.Linear(channel // reduction, channel, bias=False), | ||
) | ||
|
||
self.sigmoid = nn.Sigmoid() | ||
|
||
def execute(self, x): | ||
b, c, _, _ = x.size() | ||
y_avg = self.avg_pool(x).view(b, c) | ||
y_avg = self.fc_avg(y_avg).view(b, c, 1, 1) | ||
|
||
y_max = self.max_pool(x).view(b, c) | ||
y_max = self.fc_max(y_max).view(b, c, 1, 1) | ||
|
||
y = self.sigmoid(y_avg+ y_avg) | ||
return x * y.expand_as(x) | ||
|
||
|
||
class ChannelPool(nn.Module): | ||
def __init__(self): | ||
super().__init__() | ||
|
||
def execute(self, x): | ||
x_max = jt.max(x,1).unsqueeze(1) | ||
x_avg = jt.mean(x,1).unsqueeze(1) | ||
x = jt.concat([x_max, x_avg], dim=1) | ||
return x | ||
|
||
class SpatialGate(nn.Module): | ||
def __init__(self): | ||
super(SpatialGate, self).__init__() | ||
kernel_size = 7 | ||
self.compress = ChannelPool() | ||
self.spatial = BasicConv(2, 1, kernel_size, stride=1, padding=(kernel_size-1) // 2, relu=False) | ||
self.sigmoid = nn.Sigmoid() | ||
def execute(self, x): | ||
x_compress = self.compress(x) | ||
x_out = self.spatial(x_compress) | ||
scale = self.sigmoid(x_out) # broadcasting | ||
return x * scale | ||
|
||
class CBAM(nn.Module): | ||
def __init__(self, gate_channels, reduction_ratio=16): | ||
super(CBAM, self).__init__() | ||
self.ChannelGate = ChannelGate(gate_channels, reduction_ratio) | ||
self.SpatialGate = SpatialGate() | ||
def execute(self, x): | ||
x_out = self.ChannelGate(x) | ||
x_out = self.SpatialGate(x_out) | ||
return x_out | ||
|
||
|
||
def main(): | ||
attention_blcok = CBAM(64) | ||
input = jt.rand([4, 64, 32, 32]) | ||
output = attention_blcok(input) | ||
print (input.size(), output.size()) | ||
|
||
if __name__ == '__main__': | ||
main() | ||
|
||
|