forked from taichi-dev/taichi
-
Notifications
You must be signed in to change notification settings - Fork 0
Commit
This commit does not belong to any branch on this repository, and may belong to a fork outside of the repository.
- Loading branch information
1 parent
fc22fd4
commit 0fdcec4
Showing
1 changed file
with
198 additions
and
0 deletions.
There are no files selected for viewing
This file contains bidirectional Unicode text that may be interpreted or compiled differently than what appears below. To review, open the file in an editor that reveals hidden Unicode characters.
Learn more about bidirectional Unicode characters
Original file line number | Diff line number | Diff line change |
---|---|---|
@@ -0,0 +1,198 @@ | ||
import taichi as ti | ||
|
||
ti.init(ti.cuda) | ||
|
||
|
||
@ti.func | ||
def quat_mul(v1, v2): | ||
return ti.Vector([ | ||
v1.x * v2.x - v1.y * v2.y - v1.z * v2.z - v1.w * v2.w, | ||
v1.x * v2.y + v1.y * v2.x + v1.z * v2.w - v1.w * v2.z, | ||
v1.x * v2.z + v1.z * v2.x + v1.w * v2.y - v1.y * v2.w, | ||
v1.x * v2.w + v1.w * v2.x + v1.y * v2.z - v1.z * v2.y | ||
]) | ||
|
||
|
||
@ti.func | ||
def quat_conj(q): | ||
return ti.Vector([q[0], -q[1], -q[2], -q[3]]) | ||
|
||
|
||
@ti.func | ||
def dot(x, y): | ||
return x.dot(y) | ||
|
||
|
||
@ti.func | ||
def xy(v): | ||
return ti.Vector([v.x, v.y]) | ||
|
||
|
||
@ti.func | ||
def yx(v): | ||
return ti.Vector([v.y, v.x]) | ||
|
||
|
||
@ti.func | ||
def xz(v): | ||
return ti.Vector([v.x, v.z]) | ||
|
||
|
||
@ti.func | ||
def zx(v): | ||
return ti.Vector([v.z, v.x]) | ||
|
||
|
||
@ti.func | ||
def xw(v): | ||
return ti.Vector([v.x, v.w]) | ||
|
||
|
||
@ti.func | ||
def wx(v): | ||
return ti.Vector([v.w, v.x]) | ||
|
||
|
||
@ti.func | ||
def xyz(v): | ||
return ti.Vector([v.x, v.y, v.z]) | ||
|
||
|
||
iters = 10 | ||
max_norm = 4 | ||
|
||
|
||
@ti.func | ||
def compute_sdf(z, c): | ||
|
||
md2 = 1.0 | ||
mz2 = dot(z, z) | ||
|
||
for iter in range(iters): | ||
md2 *= max_norm * mz2 | ||
z = quat_mul(z, z) + c | ||
|
||
mz2 = z.dot(z) | ||
if (mz2 > max_norm): | ||
break | ||
|
||
return 0.25 * ti.sqrt(mz2 / md2) * ti.log(mz2) | ||
|
||
|
||
@ti.func | ||
def compute_normal(z, c): | ||
J0 = ti.Vector([1.0, 0.0, 0.0, 0.0]) | ||
J1 = ti.Vector([0.0, 1.0, 0.0, 0.0]) | ||
J2 = ti.Vector([0.0, 0.0, 1.0, 0.0]) | ||
|
||
z_curr = z | ||
|
||
iterations = 0 | ||
while z_curr.norm() < max_norm and iterations < iters: | ||
cz = quat_conj(z_curr) | ||
|
||
J0 = ti.Vector([ | ||
dot(J0, cz), | ||
dot(xy(J0), yx(z_curr)), | ||
dot(xz(J0), zx(z_curr)), | ||
dot(xw(J0), wx(z_curr)) | ||
]) | ||
J1 = ti.Vector([ | ||
dot(J1, cz), | ||
dot(xy(J1), yx(z_curr)), | ||
dot(xz(J1), zx(z_curr)), | ||
dot(xw(J1), wx(z_curr)) | ||
]) | ||
J2 = ti.Vector([ | ||
dot(J2, cz), | ||
dot(xy(J2), yx(z_curr)), | ||
dot(xz(J2), zx(z_curr)), | ||
dot(xw(J2), wx(z_curr)) | ||
]) | ||
|
||
z_curr = quat_mul(z_curr, z_curr) + c | ||
iterations += 1 | ||
|
||
return ti.Vector([dot(J0, z_curr), | ||
dot(J1, z_curr), | ||
dot(J2, z_curr)]).normalized() | ||
|
||
|
||
image_res = (1280, 720) | ||
|
||
|
||
@ti.data_oriented | ||
class Julia: | ||
def __init__(self): | ||
self.image = ti.Vector.field(3, float, image_res) | ||
|
||
@ti.func | ||
def shade(self, pos, surface_color, normal, light_pos): | ||
light_color = ti.Vector([1, 1, 1]) | ||
|
||
light_dir = (light_pos - pos).normalized() | ||
return light_color * surface_color * max(0, dot(light_dir, normal)) | ||
|
||
@ti.kernel | ||
def march(self, time: float): | ||
time = time * 0.15 | ||
c = 0.45 * ti.cos( | ||
ti.Vector([0.5, 3.9, 1.4, 1.1]) + time * | ||
ti.Vector([1.2, 1.7, 1.3, 2.5])) - ti.Vector([0.3, 0.0, 0.0, 0.0]) | ||
|
||
r = 1.8 | ||
o3 = ti.Vector([ | ||
r * ti.cos(0.3 + 0.37 * time), 0.3 + | ||
0.8 * r * ti.cos(1.0 + 0.33 * time), r * ti.cos(2.2 + 0.31 * time) | ||
]).normalized() * r | ||
ta = ti.Vector([0.0, 0.0, 0.0]) | ||
cr = 0.1 * ti.cos(0.1 * time) | ||
|
||
for x, y in self.image: | ||
p = (-ti.Vector([image_res[0], image_res[1]]) + | ||
2.0 * ti.Vector([x, y])) / (image_res[1] * 0.75) | ||
|
||
cw = (ta - o3).normalized() | ||
cp = ti.Vector([ti.sin(cr), ti.cos(cr), 0.0]) | ||
cu = cw.cross(cp).normalized() | ||
cv = cu.cross(cw).normalized() | ||
|
||
d3 = (p.x * cu + p.y * cv + 2.0 * cw).normalized() | ||
|
||
o = ti.Vector([o3.x, o3.y, o3.z, 0.0]) | ||
d = ti.Vector([d3.x, d3.y, d3.z, 0.0]) | ||
|
||
max_t = 10 | ||
|
||
t = 0.0 | ||
for step in range(300): | ||
h = compute_sdf(o + t * d, c) | ||
t += h | ||
if h < 0.0001 or t >= max_t: | ||
break | ||
if t < max_t: | ||
normal = compute_normal(o + t * d, c) | ||
color = abs(xyz(o + t * d)) / 1.3 | ||
pos = xyz(o + t * d) | ||
self.image[x, y] = self.shade(pos, color, normal, o3) | ||
else: | ||
self.image[x, y] = (0, 0, 0) | ||
|
||
def get_image(self, time): | ||
self.march(time) | ||
return self.image | ||
|
||
|
||
julia = Julia() | ||
|
||
window = ti.ui.Window("Fractal 3D", image_res, vsync=True) | ||
canvas = window.get_canvas() | ||
|
||
frame_id = 0 | ||
|
||
while window.running: | ||
frame_id += 1 | ||
|
||
canvas.set_image(julia.get_image(frame_id / 60)) | ||
|
||
window.show() |