This repository contain code to train YOLACT netrwork for concrete crack detection and segementation. Please refer to follwing papers to learn about YOLACT algorithm
YOLACT++ (v1.2) released! (Changelog)
YOLACT++'s resnet50 model runs at 33.5 fps on a Titan Xp and achieves 34.1 mAP on COCO's test-dev
(check out our journal paper here).
In order to use YOLACT++, make sure you compile the DCNv2 code. (See Installation)
- Clone this repository and enter it:
git clone https://github.com/dbolya/yolact.git cd yolact
- Set up the environment using one of the following methods:
- Using Anaconda
- Run
conda env create -f environment.yml
- Run
- Manually with pip
- Set up a Python3 environment (e.g., using virtenv).
- Install Pytorch 1.0.1 (or higher) and TorchVision.
- Install some other packages:
# Cython needs to be installed before pycocotools pip install cython pip install opencv-python pillow pycocotools matplotlib
- Using Anaconda